Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016

RIT's 2005 landmark research matches the actual waveform signals

Research conducted by Rochester Institute of Technology scientists was integral to the breakthrough detection of gravitational waves from binary black holes that was announced today by the Laser Interferometer Gravitational-wave Observatory (LIGO) Scientific Collaboration.


RIT scientists produced one of the first computer simulations of gravitational waves from colliding black holes. The signals they predicted were confirmed by the LIGO Scientific Collaboration's first observation of gravitational waves.

Credit: Campanelli et al.

The collaboration's findings confirm the existence of gravitational waves predicted by Albert Einstein's 1915 general theory of relativity and introduce a revolutionary new way of understanding the universe through gravitational wave astronomy. Six Rochester Institute of Technology researchers are among the authors on the upcoming paper in Physical Review Letters.

The LIGO paper prominently cites 2005 landmark research on binary black hole mergers led by Manuela Campanelli, director of RIT's Center for Computational Relativity and Gravitation. The signal detected by LIGO matches the numerical model of the waveform confirmed by RIT researchers and predicted in their 2005 breakthrough science, "Accurate Evolutions of Orbiting Black-Hole Binaries without Excision," originally published in Physical Review Letters, on March 22, 2006. The paper recently appeared in the American Physical Society's curated collection of seminal papers celebrating 100 years of Einstein's theory of general relativity.

Based on this milestone work from a decade ago, RIT researchers at the center, Carlos Lousto and James Healy, numerically modeled the merger of a pair of black holes and simulated gravitational waveforms. The actual wave patterns LIGO detected on Sept. 14, 2015, matched the simulations Lousto and Healy had created.

"The direct observation of a binary black hole merger by LIGO is an amazing confirmation of our theoretical calculations," said Campanelli, professor in RIT's School of Mathematical Sciences and an American Physical Society Fellow. "This is a historic moment in science."

The RIT team's breakthrough, known as the "moving puncture" approach, solved the interrelated equations for strong field gravity that comprise Einstein's theory of general relativity. Their method radically transformed the landscape of numerical relativity--a specialized field that solves Einstein's equations with sophisticated mathematics and supercomputers--and opened frontiers in gravitational wave astrophysics, Campanelli said.

RIT scientists used the moving puncture approach to make the first calculations of gravitational radiation from merging black holes with arbitrary masses and spins, and the discovery of large gravitational-radiation recoils from spinning supermassive black-hole mergers. The method also made possible their study of spin dynamics effects, such as spin-flips, precession and hang-up orbits, and extreme mass-ratio binaries.

"It is incredibly exciting to see the deep connections between theory and observation," said Lousto, a co-author on both the 2006 and LIGO breakthrough papers. "This is the Holy Grail of science. To confirm amazing predictions of general relativity is a dream come true. We have witnessed a historic event, the confirmation of the 100-year-old predictions of Einstein regarding gravitational waves and our 10-year-old computation of the merger of two black holes in a single event."

Collaborator Pedro Marronetti, program director of the division of gravitational physics at the National Science Foundation, noted that the simplicity and accuracy of their moving-puncture technique "opened up the field to a number of groups, large and small, all across the world."

RIT associate professor Yosef Zlochower, then a postdoctoral fellow and the fourth member of Campanelli's team, said, "We are witnessing the dawn of a new understanding of the universe," he said. "This has been decades in the making, and we are very proud to be part of this great effort."

###

For more information on the RIT team: https://www.rit.edu/news/story.php?id=54601

For information on CCRG: https://www.rit.edu/news/story.php?id=54596 and http://ccrg.rit.edu/

For information on RIT's Black Hole Lab: http://www.rit.edu/news/story.php?id=54591

Media Contact

Susan Gawlowicz
smguns@rit.edu
585-475-5061

 @ritnews

http://www.rit.edu 

Susan Gawlowicz | EurekAlert!

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>