Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016

RIT's 2005 landmark research matches the actual waveform signals

Research conducted by Rochester Institute of Technology scientists was integral to the breakthrough detection of gravitational waves from binary black holes that was announced today by the Laser Interferometer Gravitational-wave Observatory (LIGO) Scientific Collaboration.


RIT scientists produced one of the first computer simulations of gravitational waves from colliding black holes. The signals they predicted were confirmed by the LIGO Scientific Collaboration's first observation of gravitational waves.

Credit: Campanelli et al.

The collaboration's findings confirm the existence of gravitational waves predicted by Albert Einstein's 1915 general theory of relativity and introduce a revolutionary new way of understanding the universe through gravitational wave astronomy. Six Rochester Institute of Technology researchers are among the authors on the upcoming paper in Physical Review Letters.

The LIGO paper prominently cites 2005 landmark research on binary black hole mergers led by Manuela Campanelli, director of RIT's Center for Computational Relativity and Gravitation. The signal detected by LIGO matches the numerical model of the waveform confirmed by RIT researchers and predicted in their 2005 breakthrough science, "Accurate Evolutions of Orbiting Black-Hole Binaries without Excision," originally published in Physical Review Letters, on March 22, 2006. The paper recently appeared in the American Physical Society's curated collection of seminal papers celebrating 100 years of Einstein's theory of general relativity.

Based on this milestone work from a decade ago, RIT researchers at the center, Carlos Lousto and James Healy, numerically modeled the merger of a pair of black holes and simulated gravitational waveforms. The actual wave patterns LIGO detected on Sept. 14, 2015, matched the simulations Lousto and Healy had created.

"The direct observation of a binary black hole merger by LIGO is an amazing confirmation of our theoretical calculations," said Campanelli, professor in RIT's School of Mathematical Sciences and an American Physical Society Fellow. "This is a historic moment in science."

The RIT team's breakthrough, known as the "moving puncture" approach, solved the interrelated equations for strong field gravity that comprise Einstein's theory of general relativity. Their method radically transformed the landscape of numerical relativity--a specialized field that solves Einstein's equations with sophisticated mathematics and supercomputers--and opened frontiers in gravitational wave astrophysics, Campanelli said.

RIT scientists used the moving puncture approach to make the first calculations of gravitational radiation from merging black holes with arbitrary masses and spins, and the discovery of large gravitational-radiation recoils from spinning supermassive black-hole mergers. The method also made possible their study of spin dynamics effects, such as spin-flips, precession and hang-up orbits, and extreme mass-ratio binaries.

"It is incredibly exciting to see the deep connections between theory and observation," said Lousto, a co-author on both the 2006 and LIGO breakthrough papers. "This is the Holy Grail of science. To confirm amazing predictions of general relativity is a dream come true. We have witnessed a historic event, the confirmation of the 100-year-old predictions of Einstein regarding gravitational waves and our 10-year-old computation of the merger of two black holes in a single event."

Collaborator Pedro Marronetti, program director of the division of gravitational physics at the National Science Foundation, noted that the simplicity and accuracy of their moving-puncture technique "opened up the field to a number of groups, large and small, all across the world."

RIT associate professor Yosef Zlochower, then a postdoctoral fellow and the fourth member of Campanelli's team, said, "We are witnessing the dawn of a new understanding of the universe," he said. "This has been decades in the making, and we are very proud to be part of this great effort."

###

For more information on the RIT team: https://www.rit.edu/news/story.php?id=54601

For information on CCRG: https://www.rit.edu/news/story.php?id=54596 and http://ccrg.rit.edu/

For information on RIT's Black Hole Lab: http://www.rit.edu/news/story.php?id=54591

Media Contact

Susan Gawlowicz
smguns@rit.edu
585-475-5061

 @ritnews

http://www.rit.edu 

Susan Gawlowicz | EurekAlert!

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>