Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016

RIT's 2005 landmark research matches the actual waveform signals

Research conducted by Rochester Institute of Technology scientists was integral to the breakthrough detection of gravitational waves from binary black holes that was announced today by the Laser Interferometer Gravitational-wave Observatory (LIGO) Scientific Collaboration.


RIT scientists produced one of the first computer simulations of gravitational waves from colliding black holes. The signals they predicted were confirmed by the LIGO Scientific Collaboration's first observation of gravitational waves.

Credit: Campanelli et al.

The collaboration's findings confirm the existence of gravitational waves predicted by Albert Einstein's 1915 general theory of relativity and introduce a revolutionary new way of understanding the universe through gravitational wave astronomy. Six Rochester Institute of Technology researchers are among the authors on the upcoming paper in Physical Review Letters.

The LIGO paper prominently cites 2005 landmark research on binary black hole mergers led by Manuela Campanelli, director of RIT's Center for Computational Relativity and Gravitation. The signal detected by LIGO matches the numerical model of the waveform confirmed by RIT researchers and predicted in their 2005 breakthrough science, "Accurate Evolutions of Orbiting Black-Hole Binaries without Excision," originally published in Physical Review Letters, on March 22, 2006. The paper recently appeared in the American Physical Society's curated collection of seminal papers celebrating 100 years of Einstein's theory of general relativity.

Based on this milestone work from a decade ago, RIT researchers at the center, Carlos Lousto and James Healy, numerically modeled the merger of a pair of black holes and simulated gravitational waveforms. The actual wave patterns LIGO detected on Sept. 14, 2015, matched the simulations Lousto and Healy had created.

"The direct observation of a binary black hole merger by LIGO is an amazing confirmation of our theoretical calculations," said Campanelli, professor in RIT's School of Mathematical Sciences and an American Physical Society Fellow. "This is a historic moment in science."

The RIT team's breakthrough, known as the "moving puncture" approach, solved the interrelated equations for strong field gravity that comprise Einstein's theory of general relativity. Their method radically transformed the landscape of numerical relativity--a specialized field that solves Einstein's equations with sophisticated mathematics and supercomputers--and opened frontiers in gravitational wave astrophysics, Campanelli said.

RIT scientists used the moving puncture approach to make the first calculations of gravitational radiation from merging black holes with arbitrary masses and spins, and the discovery of large gravitational-radiation recoils from spinning supermassive black-hole mergers. The method also made possible their study of spin dynamics effects, such as spin-flips, precession and hang-up orbits, and extreme mass-ratio binaries.

"It is incredibly exciting to see the deep connections between theory and observation," said Lousto, a co-author on both the 2006 and LIGO breakthrough papers. "This is the Holy Grail of science. To confirm amazing predictions of general relativity is a dream come true. We have witnessed a historic event, the confirmation of the 100-year-old predictions of Einstein regarding gravitational waves and our 10-year-old computation of the merger of two black holes in a single event."

Collaborator Pedro Marronetti, program director of the division of gravitational physics at the National Science Foundation, noted that the simplicity and accuracy of their moving-puncture technique "opened up the field to a number of groups, large and small, all across the world."

RIT associate professor Yosef Zlochower, then a postdoctoral fellow and the fourth member of Campanelli's team, said, "We are witnessing the dawn of a new understanding of the universe," he said. "This has been decades in the making, and we are very proud to be part of this great effort."

###

For more information on the RIT team: https://www.rit.edu/news/story.php?id=54601

For information on CCRG: https://www.rit.edu/news/story.php?id=54596 and http://ccrg.rit.edu/

For information on RIT's Black Hole Lab: http://www.rit.edu/news/story.php?id=54591

Media Contact

Susan Gawlowicz
smguns@rit.edu
585-475-5061

 @ritnews

http://www.rit.edu 

Susan Gawlowicz | EurekAlert!

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>