Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lightest exoplanet yet discovered

Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far.

The planet, “e”, in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist.

These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile.

“The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone’ — a region around the host star with the right conditions for water to be liquid on a planet’s surface”, says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough.

Planet Gliese 581 e orbits its host star – located only 20.5 light-years away in the constellation Libra (“the Scales”) — in just 3.15 days. “With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet”, says co-author Xavier Bonfils from Grenoble Observatory.

Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations — also obtained with the HARPS spectrograph at ESO’s La Silla Observatory and announced two years ago — this star was known to harbour a system with a Neptune-sized planet (ESO 30/05) and two super-Earths (ESO 22/07). With the discovery of Gliese 581 e, the planetary system now has four known planets, with masses of about 1.9 (planet e), 16 (planet b), 5 (planet c), and 7 Earth-masses (planet d). The planet furthest out, Gliese 581 d, orbits its host star in 66.8 days. “Gliese 581 d is probably too massive to be made only of rocky material, but we can speculate that it is an icy planet that has migrated closer to the star,” says team member Stephane Udry. The new observations have revealed that this planet is in the habitable zone, where liquid water could exist. “‘d’ could even be covered by a large and deep ocean — it is the first serious 'water world' candidate,” continued Udry.

The gentle pull of an exoplanet as it orbits the host star introduces a tiny wobble in the star’s motion — only about 7 km/hour, corresponding to brisk walking speed — that can just be detected on Earth with today’s most sophisticated technology. Low-mass red dwarf stars such as Gliese 581 are potentially fruitful hunting grounds for low-mass exoplanets in the habitable zone. Such cool stars are relatively faint and their habitable zones lie close in, where the gravitational tug of any orbiting planet found there would be stronger, making the telltale wobble more pronounced. Even so, detecting these tiny signals is still a challenge, and the discovery of Gliese 581 e and the refinement of Gliese 581 d’s orbit were only possible due to HARPS’s unique precision and stability.

“It is amazing to see how far we have come since we discovered the first exoplanet around a normal star in 1995 — the one around 51 Pegasi,” says Mayor. “The mass of Gliese 581 e is 80 times less than that of 51 Pegasi b. This is tremendous progress in just 14 years.”

The astronomers are confident that they can still do better. “With similar observing conditions an Earth-like planet located in the middle of the habitable zone of a red dwarf star could be detectable,” says Bonfils. “The hunt continues.”

This discovery was announced today at the JENAM conference during the European Week of Astronomy & Space Science, which is taking place at the University of Hertfordshire, UK. The results have also been submitted for publication in the research journal Astronomy & Astrophysics (“The HARPS search for southern extra-solar planets: XVIII. An Earth-mass planet in the GJ 581 planetary system”, by Mayor et al., 2009).
The team is composed of M. Mayor, S. Udry, C. Lovis, F. Pepe and D. Queloz (Geneva Observatory, Switzerland), X. Bonfils, T. Forveille , X. Delfosse, H. Beust and C. Perrier (LAOG, France), N. C. Santos (Centro de Astrofisica,Universidade de Porto), F. Bouchy (IAP, Paris, France) and J.-L. Bertaux (Service d’Aéronomie du CNRS, Verrières-le-Buisson, France).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.

Michel Mayor
Geneva University, Switzerland
E-mail: michel.mayor (at)
Prof. Mayor will attend the JENAM conference from 20 to 21 April and can be reached by phone through the JENAM press centre.

Xavier Bonfils, Thierry Forveille
Grenoble Observatory, France
Phone: +33 476 63 55 27, +33 4 76 51 42 06
E-mail: xavier.bonfils (at), thierry.forveille(at)
Stephane Udry
Geneva University, Switzerland
Phone: +41 22 379 2467
E-mail: stephane.udry (at)

Dr. Henri Boffin | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>