Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light touch brightens nanotubes

03.12.2010
Rice University scientists find a little ozone goes a long way for fluorescence

Rice University researchers have discovered a simple way to make carbon nanotubes shine brighter.

The Rice lab of researcher Bruce Weisman, a pioneer in nanotube spectroscopy, found that adding tiny amounts of ozone to batches of single-walled carbon nanotubes and exposing them to light decorates all the nanotubes with oxygen atoms and systematically changes their near-infrared fluorescence.

Chemical reactions on nanotube surfaces generally kill their limited natural fluorescence, Weisman said. But the new process actually enhances the intensity and shifts the wavelength.

He expects the breakthrough, reported online in the journal Science, to expand opportunities for biological and material uses of nanotubes, from the ability to track them in single cells to novel lasers.

Best of all, the process of making these bright nanotubes is incredibly easy -- "simple enough for a physical chemist to do," said Weisman, a physical chemist himself.

He and primary author Saunab Ghosh, a graduate student in his lab, discovered that a light touch was key. "We're not the first people to study the effects of ozone reacting with nanotubes," Weisman said. "That's been done for a number of years.

"But all the prior researchers used a heavy hand, with a lot of ozone exposure. When you do that, you destroy the favorable optical characteristics of the nanotube. It basically turns off the fluorescence. In our work we only add about one oxygen atom for 2,000-3,000 carbon atoms, a very tiny fraction."

Ghosh and Weisman started with a suspension of nanotubes in water and added small amounts of gaseous or dissolved ozone. Then they exposed the sample to light. Even light from a plain desk lamp would do, they reported.

Most sections of the doped nanotubes remain pristine and absorb infrared light normally, forming excitons, quasiparticles that tend to hop back and forth along the tube -- until they encounter oxygen.

"An exciton can explore tens of thousands of carbon atoms during its lifetime," Weisman said. "The idea is that it can hop around enough to find one of these doping sites, and when it does, it tends to stay there, because it's energetically stable. It becomes trapped and emits light at a longer (red-shifted) wavelength.

"Essentially, most of the nanotube is turning into an antenna that absorbs light energy and funnels it to the doping site. We can make nanotubes in which 80 to 90 percent of the emission comes from doped sites," he said.

Lab tests found the doped nanotubes' fluorescent properties to be stable for months.

Weisman said treated nanotubes could be detected without using visible light. "Why does that matter? In biological detection, any time you excite at visible wavelengths, there's a little bit of background emission from the cells and from the tissues. By exciting instead in the infrared, we get rid of that problem," he said.

The researchers tested their ability to view doped nanotubes in a biological environment by adding them to cultures of human uterine adenocarcinoma cells. Later, images of the cells excited in the near-infrared showed single nanotubes shining brightly, whereas the same sample excited with visible light displayed a background haze that made the tubes much more difficult to spot.

His lab is refining the process of doping nanotubes, and Weisman has no doubt about their research potential. "There are many interesting scientific avenues to pursue," he said. "And if you want to see a single tube inside a cell, this is the best way to do it. The doped tubes can also be used for biodistribution studies.

"The nice thing is, this isn't an expensive or elaborate process," Weisman said. "Some reactions require days of work in the lab and transform only a small fraction of your starting material. But with this process, you can convert an entire nanotube sample very quickly."

The paper's co-authors include Rice research scientist Sergei Bachilo, research technician Rebecca Simonette and Kathleen Beckingham, a Rice professor of biochemistry and cell biology.

The National Science Foundation, the Welch Foundation and NASA supported the research.

Read the abstract at http://www.sciencemag.org/content/early/2010/11/24/science.1196382.abstract

An animation is available at http://www.youtube.com/watch?v=iVM_5ktGtnw

Artwork is available for download at http://www.media.rice.edu/images/media/NEWSRELS/1201_Weisman.jpg

CAPTION: Single-walled carbon nanotubes treated with ozone incorporate oxygen atoms that shift and intensify the nanotubes' near-infrared fluorescence emission. The discovery by Rice University scientists should lead to new uses of nanotubes in biomedicine and materials science. (Credit: Bruce Weisman/Rice University)

Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>