Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light sculpts three-dimensional crystals in nonlinear optical materials

04.03.2010
Scientists from the University of Muenster and the Indian Institute of Technology have experimentally demonstrated for the first time the creation of 3D photonic crystals and quasicrystals with a plethora of geometries and forms purely by the action of light in a nonlinear optical material, which allows reconfigurable as well as scalable crystal and quasicrystal formation.

Engineering and guiding light by artificial structures is one of the most actual questions in photonics, allowing optical information processing to open new horizons for waveguiding, storing, and processing light.

Three-dimensional structures have been a challenge up to now, either due to the complex formation method or the lack of appropriate material. Especially the creation complex quasi crystals that have a number of advantages features as e.g. better control of the transmission features by larger und more homogeneously distributed band gaps, is an actual challenge.

A combined effort of researchers from "Institut für Angewandte Physik" and "Center for Nonlinear Science", Westfaelische Wilhelms-Universitaet Muenster (WWU), Germany and Department of Physics, Indian Institute of Technology Delhi, India, shines the way for a versatile approach to form complex 3D quasi-crystallographic photonic crystals structures formed by light. The researchers have experimentally demonstrated for the first time the creation of 3D photonic crystals and quasicrystals with a plethora of geometries and forms purely by the action of light in a nonlinear optical - so-called photorefractive- material, which allows reconfigurable as well as scalable crystal and quasicrystal formation.

"Creating photonic crystals by light itself is a wonderful example on how light matter interaction can be exploited" said Prof. Dr. Cornelia Denz, Director of the Institute for Applied Physics and Leader of the Center for Nonlinear Science, WWU, who supervised the research team. "Novel three-dimensional photonic structures with reconfigurable features for photonic device integration is a hot topic among the research community. Exploiting the principle of 'light is controlling light', our complex three-dimensional photonic quasicrystals will allow forming a reconfigurable platform to investigate advanced nonlinear light-matter interactions in higher spatial dimensions" emphasized Prof. Denz.

By modifying a laser light beam by a spatial light modulator, and subsequently sculting a nonlinear optical material with this light structure, the research team could easily generate artificial refractive index photonic structures. Typically, neither any additional optical component nor manipulation of the experimental setup is involved while reconfiguring from one structure to another.

"The success of this versatile experimental innovation paves the way to the mass production of scalable large area quasi-crystallographic photonic templates. This in turn points to the realization of complex artificial photonic bandgap structures for promising applications as e.g. highly efficient flat-panel displays with customized angular emission," commented Dr. Joby Joseph, Associate Professor of Physics, Photonics Group, Indian Institute of Technology Delhi, India, who coordinated the collaborative efforts from India.

The researchers elaborate their work in the journal "Advanced Materials" (Vol.22, No.3, pp.356-360; DOI: 10.1002/adma.200901792) where Jolly Xavier as the lead author together with Martin Boguslawski, Patrick Rose, Dr. Joby Joseph, and Prof. Dr. Cornelia Denz, describe their research details. The research was partially funded by German Academic Exchange Service.

Dr. Christina Heimken | idw
Further information:
http://www3.interscience.wiley.com/cgi-bin/fulltext/122596631/PDFSTART
http://www.uni-muenster.de/Physik.AP/Denz/

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>