Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light sculpts three-dimensional crystals in nonlinear optical materials

04.03.2010
Scientists from the University of Muenster and the Indian Institute of Technology have experimentally demonstrated for the first time the creation of 3D photonic crystals and quasicrystals with a plethora of geometries and forms purely by the action of light in a nonlinear optical material, which allows reconfigurable as well as scalable crystal and quasicrystal formation.

Engineering and guiding light by artificial structures is one of the most actual questions in photonics, allowing optical information processing to open new horizons for waveguiding, storing, and processing light.

Three-dimensional structures have been a challenge up to now, either due to the complex formation method or the lack of appropriate material. Especially the creation complex quasi crystals that have a number of advantages features as e.g. better control of the transmission features by larger und more homogeneously distributed band gaps, is an actual challenge.

A combined effort of researchers from "Institut für Angewandte Physik" and "Center for Nonlinear Science", Westfaelische Wilhelms-Universitaet Muenster (WWU), Germany and Department of Physics, Indian Institute of Technology Delhi, India, shines the way for a versatile approach to form complex 3D quasi-crystallographic photonic crystals structures formed by light. The researchers have experimentally demonstrated for the first time the creation of 3D photonic crystals and quasicrystals with a plethora of geometries and forms purely by the action of light in a nonlinear optical - so-called photorefractive- material, which allows reconfigurable as well as scalable crystal and quasicrystal formation.

"Creating photonic crystals by light itself is a wonderful example on how light matter interaction can be exploited" said Prof. Dr. Cornelia Denz, Director of the Institute for Applied Physics and Leader of the Center for Nonlinear Science, WWU, who supervised the research team. "Novel three-dimensional photonic structures with reconfigurable features for photonic device integration is a hot topic among the research community. Exploiting the principle of 'light is controlling light', our complex three-dimensional photonic quasicrystals will allow forming a reconfigurable platform to investigate advanced nonlinear light-matter interactions in higher spatial dimensions" emphasized Prof. Denz.

By modifying a laser light beam by a spatial light modulator, and subsequently sculting a nonlinear optical material with this light structure, the research team could easily generate artificial refractive index photonic structures. Typically, neither any additional optical component nor manipulation of the experimental setup is involved while reconfiguring from one structure to another.

"The success of this versatile experimental innovation paves the way to the mass production of scalable large area quasi-crystallographic photonic templates. This in turn points to the realization of complex artificial photonic bandgap structures for promising applications as e.g. highly efficient flat-panel displays with customized angular emission," commented Dr. Joby Joseph, Associate Professor of Physics, Photonics Group, Indian Institute of Technology Delhi, India, who coordinated the collaborative efforts from India.

The researchers elaborate their work in the journal "Advanced Materials" (Vol.22, No.3, pp.356-360; DOI: 10.1002/adma.200901792) where Jolly Xavier as the lead author together with Martin Boguslawski, Patrick Rose, Dr. Joby Joseph, and Prof. Dr. Cornelia Denz, describe their research details. The research was partially funded by German Academic Exchange Service.

Dr. Christina Heimken | idw
Further information:
http://www3.interscience.wiley.com/cgi-bin/fulltext/122596631/PDFSTART
http://www.uni-muenster.de/Physik.AP/Denz/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>