Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light sculpts three-dimensional crystals in nonlinear optical materials

04.03.2010
Scientists from the University of Muenster and the Indian Institute of Technology have experimentally demonstrated for the first time the creation of 3D photonic crystals and quasicrystals with a plethora of geometries and forms purely by the action of light in a nonlinear optical material, which allows reconfigurable as well as scalable crystal and quasicrystal formation.

Engineering and guiding light by artificial structures is one of the most actual questions in photonics, allowing optical information processing to open new horizons for waveguiding, storing, and processing light.

Three-dimensional structures have been a challenge up to now, either due to the complex formation method or the lack of appropriate material. Especially the creation complex quasi crystals that have a number of advantages features as e.g. better control of the transmission features by larger und more homogeneously distributed band gaps, is an actual challenge.

A combined effort of researchers from "Institut für Angewandte Physik" and "Center for Nonlinear Science", Westfaelische Wilhelms-Universitaet Muenster (WWU), Germany and Department of Physics, Indian Institute of Technology Delhi, India, shines the way for a versatile approach to form complex 3D quasi-crystallographic photonic crystals structures formed by light. The researchers have experimentally demonstrated for the first time the creation of 3D photonic crystals and quasicrystals with a plethora of geometries and forms purely by the action of light in a nonlinear optical - so-called photorefractive- material, which allows reconfigurable as well as scalable crystal and quasicrystal formation.

"Creating photonic crystals by light itself is a wonderful example on how light matter interaction can be exploited" said Prof. Dr. Cornelia Denz, Director of the Institute for Applied Physics and Leader of the Center for Nonlinear Science, WWU, who supervised the research team. "Novel three-dimensional photonic structures with reconfigurable features for photonic device integration is a hot topic among the research community. Exploiting the principle of 'light is controlling light', our complex three-dimensional photonic quasicrystals will allow forming a reconfigurable platform to investigate advanced nonlinear light-matter interactions in higher spatial dimensions" emphasized Prof. Denz.

By modifying a laser light beam by a spatial light modulator, and subsequently sculting a nonlinear optical material with this light structure, the research team could easily generate artificial refractive index photonic structures. Typically, neither any additional optical component nor manipulation of the experimental setup is involved while reconfiguring from one structure to another.

"The success of this versatile experimental innovation paves the way to the mass production of scalable large area quasi-crystallographic photonic templates. This in turn points to the realization of complex artificial photonic bandgap structures for promising applications as e.g. highly efficient flat-panel displays with customized angular emission," commented Dr. Joby Joseph, Associate Professor of Physics, Photonics Group, Indian Institute of Technology Delhi, India, who coordinated the collaborative efforts from India.

The researchers elaborate their work in the journal "Advanced Materials" (Vol.22, No.3, pp.356-360; DOI: 10.1002/adma.200901792) where Jolly Xavier as the lead author together with Martin Boguslawski, Patrick Rose, Dr. Joby Joseph, and Prof. Dr. Cornelia Denz, describe their research details. The research was partially funded by German Academic Exchange Service.

Dr. Christina Heimken | idw
Further information:
http://www3.interscience.wiley.com/cgi-bin/fulltext/122596631/PDFSTART
http://www.uni-muenster.de/Physik.AP/Denz/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>