Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light’s improbable connection mapped

11.10.2013
Ultrafast laser pulses and precisely cut optical crystals could control the quantum properties of light

Quantum optics scientists and engineers are striving to harness the properties of small packets of light called photons to improve communications and computational devices. Vital to these efforts is an invisible connection between pairs of photons; understanding this effect is therefore crucial.

By mapping the connections, researchers at the A*STAR Data Storage Institute, Singapore, and in Russia have shown that the properties of each photon in a pair, which were created in the same time and place, are governed by statistics1. The maps could aid future quantum optics engineering efforts.

Many of the early experiments studying the quantum properties of photons used a process called spontaneous parametric down-conversion (SPDC). In SPDC, a photon striking the front of a slab of a crystalline material with specific nonlinear optical properties decays into two lower-energy photons. These photons, referred to as the signal and the idler, are ‘entangled’ — intimately coupled in a way that classical physics cannot describe.

The properties of the photons are determined not when they leave the back of the slab, but when a measurement is made on one of them. At this moment, the properties of the other photon are immediately determined, even though the two may be separated by a long distance.

The situation is more complicated, however, when short laser pulses are used to control the timing of the process. The SPDC emission from the back of the slab consists of photon pairs, or biphotons, across a broad spectrum of wavelengths. A full understanding of the strength of the connection between any two photons in this complex emission profile is important for optimizing the entangled-photon source, and thus improving optical tests of quantum mechanics.

Dmitry Kalashnikov and co-workers fully plotted the correlations of SPDC-generated photons by carefully tailoring the properties of a nonlinear crystal of â-barium borate and the parameters of the ultrafast laser exciting it. “We fixed the frequency of the signal photon and scanned the frequency of the idler photon to find the maximum correlation between the two,” explains Kalashnikov. “We found that the maximum of the correlation is reached at two distinct frequencies.” This unusual ‘double-peak’ structure occurs only under certain conditions — when the crystal is thick enough (5 millimeters) and the exciting laser pulse length is short (less than 110 femtoseconds).

“The effect is harmful as it decreases the quality of entanglement,” says Kalashnikov. “Scientists and engineers will have to pay attention to this when constructing their quantum optics setups and devices in the future.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Kalashnikov, D. A., Fedorov, M. V. & Krivitsky, L. A. Experimental observation of double-peak structure of coincidence spectra in ultrafast spontaneous parametric down-conversion. Physical Review A 87, 013803 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>