Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First light: NIST researchers develop new way to generate superluminal pulses

04.05.2012
Researchers at the National Institute of Standards and Technology (NIST) have developed a novel way of producing light pulses that are "superluminal"—in some sense they travel faster than the speed of light.*

The technique, called four-wave mixing, reshapes parts of light pulses and advances them ahead of where they would have been had they been left to travel unaltered through a vacuum. The new method could be used to improve the timing of communications signals and to investigate the propagation of quantum correlations.


In four-wave mixing, researchers send "seed" pulses of laser light into a heated cell containing atomic rubidium vapor along with a separate "pump" beam at a different frequency. The vapor amplifies the seed pulse and shifts its peak forward, making it superluminal. At the same time, photons from the inserted beams interact with the vapor to generate a second pulse called the "conjugate." Its peak, too, can travel faster or slower depending on how the laser is tuned and the conditions inside the gain medium. Credit: NIST

According to Einstein's special theory of relativity, light traveling in a vacuum is the universal speed limit. No information can travel faster than light.

But there's kind of a loophole. A short burst of light arrives as a sort of (usually) symmetric curve like a bell curve in statistics. The leading edge of that curve can't exceed the speed of light, but the main hump, the peak of the pulse, can be skewed forward or backward, arriving sooner or later than it normally would.

Recent experiments have generated "uninformed" faster-than-light pulses by amplifying the leading edge of the pulse and attenuating, or cutting off, the back end. The method introduces a great deal of noise with no great increase in the apparent speed. Four-wave mixing produces cleaner, less noisy pulses with a greater increase in speed by "re-phasing" or rearranging the light waves that make up the pulse.

In four-wave mixing, researchers send 200-nanosecond-long "seed" pulses of laser light into a heated cell containing atomic rubidium vapor along with a separate "pump" beam at a different frequency from the seed pulses. The vapor amplifies the seed pulse and shifts its peak forward so that it becomes superluminal. At the same time, photons from the inserted beams interact with the vapor to generate a second pulse, called the "conjugate" because of its mathematical relationship to the seed. Its peak, too, can travel faster or slower depending on how the laser is tuned and the conditions inside the laser.

In the experiment, the pulses' peaks arrived 50 nanoseconds faster than light traveling through a vacuum.

One immediate application that the group would like to explore for this system is quantum discord. Quantum discord mathematically defines the quantum information shared between two correlated systems—in this case, the seed and conjugate pulses. By performing measurements of quantum discord between fast beams and reference beams, the group hopes to determine how useful this fast light could be for the transmission and processing of quantum information.

* R. Glasser, U. Vogl and P. Lett. Stimulated generation of superluminal light pulses via four-wave mixing. Physical Review Letters, published online April 26, 2012.

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>