Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This little light of mine: Changing the color of single photons emitted by quantum dots

15.10.2010
Researchers at the National Institute of Standards and Technology (NIST) have demonstrated* for the first time the conversion of near-infrared 1,300 nm wavelength single photons emitted from a true quantum source, a semiconductor quantum dot, to a near-visible wavelength of 710 nm. The ability to change the color of single photons may aid in the development of hybrid quantum systems for applications in quantum communication, computation and metrology.

Two important resources for quantum information processing are the transmission of data encoded in the quantum state of a photon and its storage in long-lived internal states of systems like trapped atoms, ions or solid-state ensembles.

Ideally, one envisions devices that are good at both generating and storing photons. However, this is challenging in practice because while typical quantum memories are suited to absorbing and storing near-visible photons, transmission is best accomplished at near-infrared wavelengths where information loss in telecommunications optical fibers is low.

To satisfy these two conflicting requirements, the NIST team combined a fiber-coupled single photon source with a frequency up-conversion single photon detector. Both developed at NIST, the frequency up-conversion detector uses a strong pump laser and a special non-linear crystal to convert long wavelength (low frequency) photons into short wavelength (high frequency) photons with high efficiency and sensitivity (http://www.nist.gov/itl/antd/nir_082509.cfm).

According to Matthew Rakher and Kartik Srinivasan, two authors of the paper, previous up-conversion experiments looked at the color conversion of highly attenuated laser beams that contained less than one photon on average. However, these light sources still exhibited "classical" photon statistics exactly like that of an unattenuated laser, meaning that the photons are organized in such as way that at most times there are no photons while at other times there are more than one. Secure quantum communications relies upon the use of single photons.

"The quantum dot can act as a true single photon source," says Srinivasan. "Each time we excite the dot, it subsequently releases that energy as a single photon. In the past, we had little control over the wavelength of that photon, but now we can generate a single photon of one color on demand, transmit it over long distances with fiber optics, and convert it to another color."

Converting the photon's wavelength also makes it easier to detect, say co-authors Lijun Ma and Xiao Tang. While commercially available single photon detectors in the near-infrared suffer noise problems, detectors in the near-visible are a comparatively mature and high-performance technology. The paper describes how the wavelength conversion of the photons improved their detection sensitivity by a factor of 25 with respect to what was achieved prior to conversion.

*M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan. Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion. Nature Photonics. Published online Oct. 3, 2010, doi:10.1038/nphoton.2010.221

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: NIST Rakher laser beam light source quantum dot single photon

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>