Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This little light of mine: Changing the color of single photons emitted by quantum dots

15.10.2010
Researchers at the National Institute of Standards and Technology (NIST) have demonstrated* for the first time the conversion of near-infrared 1,300 nm wavelength single photons emitted from a true quantum source, a semiconductor quantum dot, to a near-visible wavelength of 710 nm. The ability to change the color of single photons may aid in the development of hybrid quantum systems for applications in quantum communication, computation and metrology.

Two important resources for quantum information processing are the transmission of data encoded in the quantum state of a photon and its storage in long-lived internal states of systems like trapped atoms, ions or solid-state ensembles.

Ideally, one envisions devices that are good at both generating and storing photons. However, this is challenging in practice because while typical quantum memories are suited to absorbing and storing near-visible photons, transmission is best accomplished at near-infrared wavelengths where information loss in telecommunications optical fibers is low.

To satisfy these two conflicting requirements, the NIST team combined a fiber-coupled single photon source with a frequency up-conversion single photon detector. Both developed at NIST, the frequency up-conversion detector uses a strong pump laser and a special non-linear crystal to convert long wavelength (low frequency) photons into short wavelength (high frequency) photons with high efficiency and sensitivity (http://www.nist.gov/itl/antd/nir_082509.cfm).

According to Matthew Rakher and Kartik Srinivasan, two authors of the paper, previous up-conversion experiments looked at the color conversion of highly attenuated laser beams that contained less than one photon on average. However, these light sources still exhibited "classical" photon statistics exactly like that of an unattenuated laser, meaning that the photons are organized in such as way that at most times there are no photons while at other times there are more than one. Secure quantum communications relies upon the use of single photons.

"The quantum dot can act as a true single photon source," says Srinivasan. "Each time we excite the dot, it subsequently releases that energy as a single photon. In the past, we had little control over the wavelength of that photon, but now we can generate a single photon of one color on demand, transmit it over long distances with fiber optics, and convert it to another color."

Converting the photon's wavelength also makes it easier to detect, say co-authors Lijun Ma and Xiao Tang. While commercially available single photon detectors in the near-infrared suffer noise problems, detectors in the near-visible are a comparatively mature and high-performance technology. The paper describes how the wavelength conversion of the photons improved their detection sensitivity by a factor of 25 with respect to what was achieved prior to conversion.

*M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan. Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion. Nature Photonics. Published online Oct. 3, 2010, doi:10.1038/nphoton.2010.221

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: NIST Rakher laser beam light source quantum dot single photon

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>