Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This little light of mine: Changing the color of single photons emitted by quantum dots

15.10.2010
Researchers at the National Institute of Standards and Technology (NIST) have demonstrated* for the first time the conversion of near-infrared 1,300 nm wavelength single photons emitted from a true quantum source, a semiconductor quantum dot, to a near-visible wavelength of 710 nm. The ability to change the color of single photons may aid in the development of hybrid quantum systems for applications in quantum communication, computation and metrology.

Two important resources for quantum information processing are the transmission of data encoded in the quantum state of a photon and its storage in long-lived internal states of systems like trapped atoms, ions or solid-state ensembles.

Ideally, one envisions devices that are good at both generating and storing photons. However, this is challenging in practice because while typical quantum memories are suited to absorbing and storing near-visible photons, transmission is best accomplished at near-infrared wavelengths where information loss in telecommunications optical fibers is low.

To satisfy these two conflicting requirements, the NIST team combined a fiber-coupled single photon source with a frequency up-conversion single photon detector. Both developed at NIST, the frequency up-conversion detector uses a strong pump laser and a special non-linear crystal to convert long wavelength (low frequency) photons into short wavelength (high frequency) photons with high efficiency and sensitivity (http://www.nist.gov/itl/antd/nir_082509.cfm).

According to Matthew Rakher and Kartik Srinivasan, two authors of the paper, previous up-conversion experiments looked at the color conversion of highly attenuated laser beams that contained less than one photon on average. However, these light sources still exhibited "classical" photon statistics exactly like that of an unattenuated laser, meaning that the photons are organized in such as way that at most times there are no photons while at other times there are more than one. Secure quantum communications relies upon the use of single photons.

"The quantum dot can act as a true single photon source," says Srinivasan. "Each time we excite the dot, it subsequently releases that energy as a single photon. In the past, we had little control over the wavelength of that photon, but now we can generate a single photon of one color on demand, transmit it over long distances with fiber optics, and convert it to another color."

Converting the photon's wavelength also makes it easier to detect, say co-authors Lijun Ma and Xiao Tang. While commercially available single photon detectors in the near-infrared suffer noise problems, detectors in the near-visible are a comparatively mature and high-performance technology. The paper describes how the wavelength conversion of the photons improved their detection sensitivity by a factor of 25 with respect to what was achieved prior to conversion.

*M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan. Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion. Nature Photonics. Published online Oct. 3, 2010, doi:10.1038/nphoton.2010.221

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: NIST Rakher laser beam light source quantum dot single photon

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>