Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-emitting bubbles captured in the wild

28.02.2017

Physicists from the University of Göttingen image, for the first time, flashes of light emitted by collapsing bubbles in a bubble cloud

High-power ultrasound is used for cleaning surfaces or wastewater as well as for destroying kidney stones. These applications use a curious effect caused when ultrasound enters liquids: bubbles are generated that periodically grow and collapse.


Coloured sonoluminescence of xenon in concentrated sulfuric acid with dissolved sodium salt

University of Göttingen


Light emitting bubbles in a bubble cloud

University of Göttingen

Imploding bubbles compress the gas they contain so strongly that light is emitted from the resulting “hot spot” – a phenomenon called sonoluminescence. At the University of Göttingen, physicists Dr. Carlos Cairós and Dr. Robert Mettin have imaged, for the first time, sonoluminescence flashes together with the bubbles in an ultrasonically driven bubble cloud.

By high-speed video recording with up to 0.5 million images taken per second, light emitting bubbles can be identified and their shapes and oscillations analyzed. The scientists published their work in the journal Physical Review Letters.

While collapse and light emission of isolated bubbles have been well studied before in so-called bubble traps, the Göttingen experiments provide a major step towards understanding sonoluminescence in a more realistic environment of applications of high-power ultrasound: chaotic “wild” ensembles of many moving and interacting bubbles, where collisions and splitting of bubbles frequently occur.

“A particular observation is that the light-emitting bubbles do not need to be perfectly spherical – which would be the optimum shape for the extreme energy focusing in the collapse”, says Dr. Cairós. “Even bubbles pierced by a liquid jet are observed to emit light, a fact that might explain certain chemical reactions in the bubbles.”

The observation technique developed in Göttingen can detect which bubbles in a cloud produce light and can also quantify the intensity. “This photometry of sonoluminiscence may help to optimise applications of high-power ultrasound”, says Dr. Mettin.

The study was conducted in the framework of the “Christian Doppler Laboratory for Cavitation and Micro-Erosion“, a research project funded jointly by the Austrian government and the Austrian-based company Lam Research AG.

The project investigated innovative methods of surface cleaning for the semiconductor industries during the past seven years, in parallel with studying the fundamentals of bubble formation in liquids.

Original publication: Carlos Cairós, Robert Mettin, Simultaneous High-Speed Recording of Sonoluminescence and Bubble Dynamics in Multibubble Fields, Physical Review Letters 118, 064301 (2017), DOI: 10.1103/PhysRevLett.118.064301, http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.064301

Notes to editorial teams:
We have posted images to download on this subject at http://www.uni-goettingen.de/en/3240.html?cid=5758

Contact:
Dr. Robert Mettin
Georg-August-Universität Göttingen, Faculty of Physics – III. Institute
Christian Doppler Laboratory for Cavitation and Micro-Erosion
Friedrich-Hund-Platz 1, 37077 Göttingen
Phone: +49 (0)551 39-22285
Mail: robert.mettin@phys.uni-goettingen.de
Website: www.physik3.gwdg.de/~robert/

Weitere Informationen:

http://www.uni-goettingen.de/en/3240.html?cid=5758
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.064301

Romas Bielke | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>