Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Light driving light: how an optical transistor operates

The transistor is one of the most influential inventions of the 20th century.

Its crucial function is to drive electrical signals utilising electrical signals in television sets, telephones, PCs and other devices. The smaller the circuits with which the signals are conducted, the faster the data processing.

At the University of Bayreuth, a research team centred around Prof. Dr. Jürgen Köhler, Dr. Martti Pärs and Prof. Dr. Mukundan Thelakkat has now demonstrated the amplifying function of an optical transistor. The point: in this transistor, light substitutes electricity. Light signals are driven by light signals.

In the recent online edition of the journal "Angewandte Chemie International Edition", the Bayreuth scientists introduce their discovery. Dr. Martti Pärs, a young physicist, made a particularly noteworthy contribution to the research. The results that have now been published evolved from the close co-operation between Experimental Physics and Macromolecular Chemistry within the Bayreuth campus. The results are the foundation of a completely new generation of transistors. The DFG supports the research in this area within the framework of the research training group "Photophysics of synthetic and biological multichromophor systems".

Two molecules in the team:
one light-driven switch and a strongly illuminating partner
The conceptual model of an optical transistor used in Bayreuth is simple. Two molecules are chemically bound. Using light signals with varying wavelengths, one of the two molecules is alternately brought into a state A or B. The molecule thereby reacts like a switch, alternating between two contrasting states. Depending on whether this light-driven molecular switch is in state A or B, the molecule bound to it emits a weak or strong light signal: light driving light. During this process, a considerable amplification effect evolves as a small light signal is sufficient to bring the molecular switch into a condition whereby the partner molecule strongly fluoresces.
Principal benefits:
highest efficiency within a tiny space
A transistor functioning as described above provides considerable benefits compared to conventional transistors: the latter cannot be optionally reduced in size due to physical reasons. All endeavours to develop the smallest possible circuit for the transport of electrical signals are naturally constrained. However the driving of light signals utilising light signals can be realised at a molecular level as the Bayreuth scientists have now demonstrated. In theory, optical transistors may already exist at the molecular scale. They are innately smaller and therefore faster than electrical transistors.

Another benefit: several optical "mini transistors" can be assembled to become a larger and even more powerful transistor because light signals, as opposed to electrical signals, do not interfere with each other. Therefore a multitude of data is processed simultaneously within a tiny space. Finally, any optical transistor regardless of size is superior relating to one aspect: all signals are processed at the speed of light – to be faster is not possible.

Physical details:
the interior of an optical transistor
The switch molecule used in Bayreuth is dithienylcyclopentene (DCP). In the centre of the symmetrical molecule is a carbon ring. The closed ring is opened as soon as it is hit by an ultra-violet ray of light (280 - 310 nm). The open ring is closed as soon as it is exposed to a visible coloured ray of light (500 - 650 nm). DCP is termed in research a photochrome / photoswitch molecule because it alternates, depending upon the light ray’s wavelength, between the two structures.

At the opposite ends of the DCP molecules, the Bayreuth researchers have attached two organic chromophores, belonging to the perylene bisimides (PBI) group. PBI molecules are known for their ability to fluoresce strongly. This is always the case when a PBI molecule absorbs light energy and emits it.

A PBI molecule that is attached like an arm to a DCP molecule fluoresces with varying intensity – depending on whether the ring in the molecular switch is open or closed. When it is closed, the DCP is at a relatively low energy level. Therefore the PBI transfers the greatest part of its absorbed light energy to the DCP. The DCP dissipates light energy without fluorescence. In this case, the PBI weakly fluoresces. However, when the ring in the DCP is open, we observe the opposite. The DCP is at such a high energy level that the PBI is unable to pass on light energy to the DCP. Instead, it fully emits the absorbed light energy. The PBI is strongly fluorescent.

Further research challenges

Based on the above research results, a future vision of a new generation of transistors has emerged. For this vision to be realised one day, further research is necessary. For instance, it seems as if the fluorescent PBI molecules fade during longer periods of time. Consequently, their illumination power weakens. It is worthwhile to examine this effect more closely. A further observation of test conditions used so far is that it takes a relatively long period of time for the rings to open and close for a large number of DCP molecules. As a result, the gaps between the light signals driven by this process are rather large. The Bayreuth research team is therefore striving for a solution in order to minimise these periods of time.


Martti Pärs, Christiane C. Hofmann, Katja Willinger, Peter Bauer,
Mukundan Thelakkat, and Jürgen Köhler,
An Organic Optical Transistor Operated under Ambient Conditions,
in: Angewandte Chemie International Edition 2011, 50,
Article first published online: 5 Oct 2011
DOI-Bookmark: 10.1002/anie.201104193
Contact for further information:
Prof. Dr. Jürgen Köhler
Experimental Physics IV
University of Bayreuth
95440 Bayreuth, Germany
Telephone: +49 (0)921 / 55-4000 and 55-4001
Dr. Martti Pärs
Experimental Physics IV
University of Bayreuth
95440 Bayreuth, Germany
Telephone: +49 (0)921 / 55-4003
Prof. Dr. Mukundan Thelakkat
Applied Functional Polymers
University of Bayreuth
95440 Bayreuth, Germany
Telephone: +49 (0)921 / 55-3108

Christian Wißler | Universität Bayreuth
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>