Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light bursts out of a flying mirror

24.04.2013
An international team of researchers succeeds in generating flashes of extreme ultraviolet radiation via the reflection from a mirror that moves close to the speed of light.

A dense sheet of electrons accelerated to close to the speed of light can act as a tuneable mirror that can generate bursts of laser-like radiation in the short wavelength range via reflection.


A laser pulse (red, bottom), liberates electrons (green) from the carbon atoms of a nanometer-thin foil and accelerates them to close to the speed of light. An infrared light pulse impinges on the electron layer from the opposite direction and reflects off the electron mirror as a light burst in the extreme ultraviolet with a duration of only a few hundred attoseconds. Picture: Thorsten Naeser

A team of physicists from the Max-Planck-Institute of Quantum Optics (MPQ) in Garching, the Ludwig-Maximilians-Universität (LMU) München, the Queens University Belfast (QUB) and the Rutherford Appleton Laboratory (RAL) near Oxford created such a mirror in a recent experiment. The scientists used an intense laser pulse to accelerate a dense sheet of electrons from a nanometre-thin foil to close to the speed of light and reflected a counter-propagating laser pulse from this relativistic mirror.

With this experiment, the physicists managed to carry out a Gedankenexperiment (thought experiment) formulated in 1905 by Albert Einstein stating that the reflection from a mirror moving close to the speed of light could in principle result in bright light pulses in the short wavelength range. The researchers report on their results in Nature Communications, 23. April, 2013.

In everyday life, reflections of light are usually observed from surfaces that are at rest such as the reflection from a piece of glass or a smooth surface of water. But, what happens if one creates a mirror moving incredibly fast, close to the speed of light? This question was answered more than a century ago by Albert Einsteins in 1905 in his theory of special relativity. Now, an international team of researchers investigated that question in an experiment.

In the experiment conducted at the Rutherford Appleton Laboratory near Oxford the physicists irradiated a nanometre-thin, freestanding foil with a 50 femtosecond short, ultra-intense laser pulse (one femtosecond is a millionth of a billionth of a second). The impinging laser pulse liberated electrons from the carbon atoms of the foil and rapidly accelerated to close to the speed of light in less than a micrometer forming a dense sheet of electrons capable of acting as a mirror. “This mirror structure is stable for only a few femtoseconds“, explains Daniel Kiefer, who wrote his Dissertation on this topic. Within this extremely short life time the scientists shot a secondary laser pulse with a wavelength in the near infrared (800 nm) and a pulse duration of several femtoseconds from the opposite direction on the generated relativistic mirror structure.

In stark contrast to a mirror at rest, light reflected from a mirror that is moving is changed in its colour (that is in its wavelength) as the reflected photons gain momentum from the mirror. This process is very similar to a ball that bounces off a racket and thereby accelerates to higher speed. However, instead of moving faster (photons already travel at the speed of light), the reflected light is shifted in its frequency. This phenomenon is very similar to the Dopplereffect observed from an ambulance siren, which sounds higher (louder) or deeper (quieter) depending on whether the ambulance is moving towards or away from the observer. In the experiment, the incredibly high velocity of the electron mirror gave rise to a change in frequency upon reflection from the near infrared to the extreme ultraviolet up to a wavelength of 60 to 80 nanometre. Moreoever, the time duration of the reflected pulses was on the order of a few hundred attoseconds only (one attosecond is a billionth of a billionth of a second).

This experiment not only supports Albert Einstein’s theory of special relativity, but in fact paves the way for a new method to generate intense, attosecond short flashes of light. Those pulses would allow the electron motion in atoms to be resolved thus giving deep insight into elementary processes in nature, which are so far largely unexplored.

For Prof. Schreiber and his group at the LMU, this is only the very beginning. Our laser systems will advance in the future delivering even more powerful pulses with higher repetition rate and shorter pulse duration. This scheme will benefit strongly from those developments in laser technology and thus may enable the generation of laser-like radiation with even higher intensity and shorter wavelength ideal to explore the microcosm. “The relativistic mirror has high potential in the next years“, Schreiber concludes. Thorsten Naeser
Publication:
D. Kiefer, M. Yeung, T. Dzelzainis, P.S. Foster, S.G. Rykovanov, C.L. S. Lewis, R. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf & B. Dromey
Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet.
Nature Communications, DOI: 10.1038/ncomms2775, 23. April 2013.

For more information please contact:

Dr. Daniel Kiefer
Ludwig-Maximilians-Universität München
Fakultät für Physik, Am Coulombwall 1
85748 Garching
Phone: +49 (0)89 / 289 -540 23
E-mail: daniel.kiefer@mpq.mpg.de

Prof. Dr. Jörg Schreiber
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 / 289 -540 25
E-mail: joerg.schreiber@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics, Garching
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht New proton record: Researchers measure magnetic moment with greatest possible precision
24.11.2017 | Johannes Gutenberg-Universität Mainz

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>