Life on Mars? The Laser Zentrum Hannover is Searching

Europe is getting ready for its first unmanned visit to the surface of Mars. “On board” are the scientists of the Laser Zentrum Hannover e.V. (LZH). The group Space Technologies are currently developing a laser suitable for use in outer space for the so-called EXOMARS-MISSION. With the help of this laser, hopes are high that any form of life on the red planet can be found.

The first European Mars Rover on a joint mission of the American and European space agencies NASA and ESA will take off in 2018. The 250 kg Rover will roll over the surface of Mars at a speed of 100 m per hour. While doing so, it will inspect the surface and gather up ground and rock samples, some of them up to 2 m deep. The main goals of the so-called EXOMARS mission are to search for traces of former or present life on the earthlike planet, and to prepare for the arrival of a manned Mars landing.

One of the central analytical instruments on the EXOMARS Rover is MOMA. MOMA stands for “Mars Organic Molecule Analyser” and will help with the complicated search for traces of life, by identifying organic materials and analysing it. If organic molecules like hydrocarbons are found, this might mean they might point to possible forms of life on Mars.

One of the core components in the MOMA is a laser desorption mass spectrometer (LD-MS) suited to travel in space, which includes a diode-pumped, solid-state laser in the UV spectrum. Using laser desorption, it is possible to bring non-vaporizable molecules in a gas phase, and make them slightly ionized, so they can be detected in a mass spectrometer. To achieve this, a compact, pulsed laser with a radiation wavelength of 266 nm is needed, with a laser pulse energy of more than 250 µJ. Such a laser system, which is also suitable for travel in space, is currently not available.

In order to use this decisive technology, the Space Technologies Group in the Laser Development Department of the LZH has received funding from the national program “exploration of outer space”. The current project aims at optimizing an existing laser system prototype, making it ready for the mission by 2014.

Around 3 million Euros will be going to the LZH for further development and qualification of the so-called Laser Desorption Mass Spectrometer (LD-MS), which is being constructed under the leadership of the Max Planck Institute for Solar System Research (MPS).

The core job of the LZH is to develop and construct the actual solid-state laser head. The technical requirements for use in outer space are very high. Dr. Jörg Neumann, project leader at the LZH explains, “The high temperature changes between night and day on Mars are a real problem. On top of that come the mechanical vibrations on the way to Mars and cosmic, ionising radiation. The real challenge is, that the laser must be rugged enough to withstand these elements, but at the same time light, small and compact.”

Scientists in the Laser Development Department are working on a passively Q-switched Nd:YAG oscillator, which is pumped longitudinally using optical fibers. With the help of non-linear crystals, the infrared light of the oscillator is transformed into ultraviolet light. Thermal controls guarantee that this system functions despite changing surrounding temperatures.

Dr. O. Roders is the project leader for the MOMA instrument at MPS in Katlenburg-Lindau in Lower Saxony, the partner working together with the LZH. He sees the cooperation with the Laser Zentrum as an excellent combination of know-how. “The absolute specialists for the necessary UV laser technology are working in Hannover,” he says. “Our experience is necessary for the suitable laser electronical parts that have to withstand the most harsh conditions in space.”

Several years of intensive development are still necessary before the group has completed a model suitable for use in space, but first investigation with a prototype are very promising: the laser head has already successfully withstood ionising radiation, vibrations and a thermal-vacuum test.

This project is subsidized by the German Aerospace Center (DLR) with funding from the Federal Ministry of Economics and Technology (BMWi), based on a resolution passed by the German Parliament under project number 50 QX 1002.

Contact:
Laser Zentrum Hannover e.V. (LZH)
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

You can find the LZH press releases with a WORD-download and when possible illustrations at www.lzh.de under “publications/press releases”

Media Contact

Michael Botts idw

More Information:

http://www.lzh.de

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors