Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life on Mars? The Laser Zentrum Hannover is Searching

28.09.2010
Scientists of the Laser Zentrum Hannover e.V. (LZH) are currently developing a laser suitable for use in outer space for the so-called EXOMARS-MISSION. With the help of this laser, hopes are high that any form of life on the red planet can be found.

Europe is getting ready for its first unmanned visit to the surface of Mars. "On board" are the scientists of the Laser Zentrum Hannover e.V. (LZH). The group Space Technologies are currently developing a laser suitable for use in outer space for the so-called EXOMARS-MISSION. With the help of this laser, hopes are high that any form of life on the red planet can be found.

The first European Mars Rover on a joint mission of the American and European space agencies NASA and ESA will take off in 2018. The 250 kg Rover will roll over the surface of Mars at a speed of 100 m per hour. While doing so, it will inspect the surface and gather up ground and rock samples, some of them up to 2 m deep. The main goals of the so-called EXOMARS mission are to search for traces of former or present life on the earthlike planet, and to prepare for the arrival of a manned Mars landing.

One of the central analytical instruments on the EXOMARS Rover is MOMA. MOMA stands for "Mars Organic Molecule Analyser" and will help with the complicated search for traces of life, by identifying organic materials and analysing it. If organic molecules like hydrocarbons are found, this might mean they might point to possible forms of life on Mars.

One of the core components in the MOMA is a laser desorption mass spectrometer (LD-MS) suited to travel in space, which includes a diode-pumped, solid-state laser in the UV spectrum. Using laser desorption, it is possible to bring non-vaporizable molecules in a gas phase, and make them slightly ionized, so they can be detected in a mass spectrometer. To achieve this, a compact, pulsed laser with a radiation wavelength of 266 nm is needed, with a laser pulse energy of more than 250 µJ. Such a laser system, which is also suitable for travel in space, is currently not available.

In order to use this decisive technology, the Space Technologies Group in the Laser Development Department of the LZH has received funding from the national program "exploration of outer space". The current project aims at optimizing an existing laser system prototype, making it ready for the mission by 2014.

Around 3 million Euros will be going to the LZH for further development and qualification of the so-called Laser Desorption Mass Spectrometer (LD-MS), which is being constructed under the leadership of the Max Planck Institute for Solar System Research (MPS).

The core job of the LZH is to develop and construct the actual solid-state laser head. The technical requirements for use in outer space are very high. Dr. Jörg Neumann, project leader at the LZH explains, "The high temperature changes between night and day on Mars are a real problem. On top of that come the mechanical vibrations on the way to Mars and cosmic, ionising radiation. The real challenge is, that the laser must be rugged enough to withstand these elements, but at the same time light, small and compact."

Scientists in the Laser Development Department are working on a passively Q-switched Nd:YAG oscillator, which is pumped longitudinally using optical fibers. With the help of non-linear crystals, the infrared light of the oscillator is transformed into ultraviolet light. Thermal controls guarantee that this system functions despite changing surrounding temperatures.

Dr. O. Roders is the project leader for the MOMA instrument at MPS in Katlenburg-Lindau in Lower Saxony, the partner working together with the LZH. He sees the cooperation with the Laser Zentrum as an excellent combination of know-how. "The absolute specialists for the necessary UV laser technology are working in Hannover," he says. "Our experience is necessary for the suitable laser electronical parts that have to withstand the most harsh conditions in space."

Several years of intensive development are still necessary before the group has completed a model suitable for use in space, but first investigation with a prototype are very promising: the laser head has already successfully withstood ionising radiation, vibrations and a thermal-vacuum test.

This project is subsidized by the German Aerospace Center (DLR) with funding from the Federal Ministry of Economics and Technology (BMWi), based on a resolution passed by the German Parliament under project number 50 QX 1002.

Contact:
Laser Zentrum Hannover e.V. (LZH)
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

You can find the LZH press releases with a WORD-download and when possible illustrations at www.lzh.de under "publications/press releases"

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>