Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Life on Mars? Brown-led research team says elusive mineral bolsters chances

Over the last several years, scientists have built a very convincing case that Mars hosted water, at least early in its history. Recent observations from the Mars Phoenix lander and other spacecraft show that the planet still holds vast deposits of water as ice at its poles and in soil-covered glaciers in the mid-latitudes.

What is less known is how much water occupied the red planet and what happened to it during its geological march to the present. Mostly, evidence has pointed to a period when clay-rich minerals were formed by water, followed by a drier time, when salt-rich, acidic water affected much of the planet. Assuming that happened, the thinking goes, it would have been difficult for life, if it did exist, to have survived and for scientists to find traces of it.

Now a research team led by Brown University has found evidence of carbonates, a long-sought mineral that shows Mars was home to a variety of watery environments — some benign, others harsh — and that the acidic bath the planet endured left at least some regional pockets unscathed.

If primitive life sprang up in pockets that avoided the acidic transformation, clues for it may remain.

"Primitive life would have liked it," said Bethany Ehlmann, a Brown graduate student and lead author of the paper that appears in the Dec. 19 edition of Science. "It's not too hot or too cold. It's not too acidic. It's a 'just right' place.'

Finding carbonates indicates that Mars had neutral to alkaline waters when the minerals formed in the mid-latitude region more than 3.6 billion years ago. Carbonates dissolve quickly in acid, therefore their survival challenges suggestions that an exclusively acidic environment later cloaked the planet.

The carbonates showed up in the most detail in two-dozen images beamed back by the Compact Reconnaissance Imaging Spectrometer for Mars, an instrument aboard the NASA Mars Reconnaissance Orbiter. Scientists found the mineral near a trough system called Nili Fossae, which is 667 kilometers (414 miles) long, at the edge of the Isidis impact basin. Carbonates were seen in a variety of terrains, including the sides of eroded mesas, sedimentary rocks within Jezero crater and rocks exposed on the sides of valleys in the crater's watershed. The researchers also found traces of carbonates in Terra Tyrrhena and in Libya Montes.

NASA's Phoenix Mars Lander recently found carbonates in soil samples, and researchers had previously found them in Martian meteorites that fell to Earth and in windblown Mars dust observed from orbit. However, the dust and soil could be mixtures from many areas, so the origins of carbonates have been unclear. The latest observations indicate carbonates may have formed over extended periods on early Mars and also point to specific locations where future rovers and landers could search for possible evidence of past life.

"This is opening up a range of environments on Mars," said John "Jack" Mustard, a Brown professor of geological sciences and a co-author on the Science paper. "This is highlighting an environment that to the best of our knowledge doesn't experience the same kind of unforgiving conditions that have been identified in other areas."

The researchers, including Brown graduate student Leah Roach and scientists from NASA, the Johns Hopkins University Applied Physics Laboratory, the Institut d'Astrophysique Spatiale at the University of Paris, the U.S. Geological Survey, Cornell University and the University of Nevada, have multiple hypotheses for how the carbonate-bearing rocks were formed and the origin of the water that shaped them. They may have been formed by slightly heated groundwater percolating through fractures in olivine-rich rocks. Or, they may have been formed at the surface when olivine-rich rocks were exposed and altered by running water. Yet another theory is the carbonates precipitated in small, shallow lakes. Either way, such environments would have boded well for primitive life forms to emerge.

"We know there's been water all over the place, but how frequently have the conditions been hospitable for life?" Mustard said. "We can say pretty confidently that when water was present in the places we looked at, it would have been a happy, pleasant environment for life."

Richard Lewis | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>