Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New LIDAR system sees the sky in 3D

EPFL, the Swiss National Science Foundation and Switzerland's National Weather service, MeteoSwiss, will inaugurate a new LIDAR measurement system in Payerne, Switzerland. This technically innovative installation, unique in the world, will provide continuous data on atmospheric humidity for Western Switzerland's weather forecasting headquarters.

To make accurate forecasts, meteorologists need data on the vertical distribution of temperature and humidity in the atmosphere. The LIDAR system developed by EPFL can collect these data continuously and automatically up to an altitude of 10km.

On August 26, EPFL will officially transfer this custom-developed LIDAR to MeteoSwiss, and from this point on Swiss forecasters will have access to this source of vertical humidity data for the models they use to calculate weather predictions. The project was supported by funding from the Swiss National Science Foundation.

One-of-a-kind Swiss know-how

The LIDAR system developed by EPFL is a relative of the familiar RADAR systems used widely in weather forecasting. Instead of sending radio waves out looking for water droplets, however, the LIDAR sends a beam of light vertically into the sky. The "echo" here is a reflection of that light from different layers in the atmosphere. This reflection is used to build an instantaneous vertical profile of temperature and humidity.

The spatial and temporal resolution is excellent – the laser beam can be shot 30 times per second, a vast improvement over weather balloons that take minutes to reach the upper atmosphere and can be sent out only a few times a day. And even though it's state-of-the-art technology, the LIDAR developed by EPFL is stable and reliable; even after a test run of several months, it did not need tuning. Traditional LIDAR systems are more finicky, typically needing to be tuned on a daily basis. According to project leader and EPFL Professor Hubert van den Bergh, "This LIDAR will serve as a reference for future or existing systems, especially since this kind of remote sensing is experiencing rapid development."

An ideal complement to MeteoSwiss' forecasting toolkit

The new LIDAR will operate at the Center for Technical Measurements at MeteoSwiss' Payerne weather service. It will provide an ideal complement to the traditional instrumentation already in place: a ground-based measurement network, balloon launched radio-soundings, radar equipment, remotely sensed windspeed and temperature measurements, and a station of the Baseline Surface Radiation Network, part of a world-wide network that measures radiation changes at the Earth's surface.

The combination of all these measurements will open up new possibilities, and weather forecasting models stand to benefit. The acquisition of the LIDAR will bring high-resolution three-dimensional humidity data to Swiss weather forecasting for the first time.

Mary Parlange | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>