Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LHCb Experiment Squeezes the Space for Expected New Physics

07.03.2012
Results presented by the LHCb collaboration this evening at the annual ‘Rencontres de Moriond’ conference, held this year in La Thuile, Italy, have put one of the most stringent limits to date on the current theory of particle physics, the Standard Model.

LHCb tests the Standard Model by measuring extremely rare processes, in this case a decay pattern predicted to happen just three times out of every billion decays of a particle known as the Bs (B-sub-s) meson. Anything other than that would be evidence for new physics. Measuring the rate of this Bs decay has been a major goal of particle physics experiments in the past decade, with the limit on its decay rate being gradually improved by the CDF and D0 experiments at Fermilab, LHCb, and most recently CMS at CERN1.

“The LHCb result on Bs decaying to two muons pushes our knowledge of the Standard Model to an unprecedented level and tells us the maximum amount of New Physics we can expect, if any, in this very rare decay,” explained LHCb spokesperson, Pierluigi Campana. “We know this is an important result for the theoretical community and also nicely complements the direct searches in ATLAS and CMS.”

The Standard Model is a highly successful theory that has been put to the test by experiments over several decades, and come through unscathed. Nevertheless, it is known to be an incomplete theory, accounting for just the 4% of the Universe that is visible to astronomy. New physics is needed to account for the remaining 96%. Such new physics could manifest itself directly, through the production of new particles that would be detected by the ATLAS and CMS experiments, or indirectly through the influence it would have on rare processes of the kind studied by LHCb.

The LHCb particle detector is a highly specialised instrument specifically designed to study short-lived B mesons, and is systematically investigating the rarest decays of these particles. Since the Standard Model gives very precise predictions for such decays, they provide a very sensitive testing ground for new physics. The latest LHCb result constrains the decay rate for Bs to two muons to be less than 4.5 decays per billion Bs decays. That does not rule out new physics, but does start to constrain theoretical models for it, and helps to set the direction for searches in all the LHC experiments.

“Sometimes we feel like Achilles pursuing the tortoise,” said Campana, “we believe our distance from new physics is steadily halving, but we will eventually reach it!”

This result is scheduled to be submitted to the journal Phys. Rev. Lett. on 20 March

Further information:
LHCb website: http://www.cern.ch/lhcb
Follow CERN at
* www.cern.ch
* http://twitter.com/cern/
* http://www.youtube.com/user/CERNTV
* http://www.quantumdiaries.org/
1 CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a candidate for accession. Israel is an Associate Member in the pre-stage to Membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

CERN Press Office | Newswise Science News
Further information:
http://www.cern.ch/lhcb

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>