Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LHC Proton Run for 2011 Reaches Successful Conclusion

After some 180 days of running and four hundred trillion proton proton collisions, the LHC’s 2011 proton run came to an end at 5.15pm yesterday evening. For the second year running, the LHC team has largely surpassed its operational objectives, steadily increasing the rate at which the LHC has delivered data to the experiments.

At the beginning of the year’s run, the objective for the LHC was to deliver a quantity of data known to physicists as one inverse femtobarn during the course of 2011. The first inverse femtobarn came on 17 June, setting the experiments up well for the major physics conferences of the summer and requiring the 2011 data objective to be revised upwards to five inverse femtobarns. That milestone was passed by 18 October, with the grand total for the year being almost six inverse femtobarns delivered to each of the two general-purpose experiments ATLAS and CMS.

“At the end of this year’s proton running, the LHC is reaching cruising speed,” said CERN*’s Director for Accelerators and Technology, Steve Myers. “To put things in context, the present data production rate is a factor of 4 million higher than in the first run in 2010 and a factor of 30 higher than at the beginning of 2011.”

Physics highlights from this year’s proton running include closing down the space available for the long sought Higgs and supersymmetric particles to hide in, putting the Standard Model of particle physics through increasingly gruelling tests, and advancing our understanding of the primordial universe.

“It has been a remarkable and exciting year for the whole LHC scientific community, in particular for our students and post-docs from all over the world. We have made a huge number of measurements of the Standard Model and accessed unexplored territory in searches for new physics. In particular, we have constrained the Higgs particle to the light end of its possible mass range, if it exists at all,” said ATLAS Spokesperson Fabiola Gianotti. “This is where both theory and experimental data expected it would be, but it’s the hardest mass range to study.”

“Looking back at this fantastic year I have the impression of living in a sort of a dream,” said CMS Spokesperson Guido Tonelli. “We have produced tens of new measurements and constrained significantly the space available for models of new physics and the best is still to come. As we speak hundreds of young scientists are still analysing the huge amount of data accumulated so far; we’ll soon have new results and, maybe, something important to say on the Standard Model Higgs Boson.”

“We’ve got from the LHC the amount of data we dreamt of at the beginning of the year and our results are putting the Standard Model of particle physics through a very tough test,” said LHCb Spokesperson Pierluigi Campana. “So far, it has come through with flying colours, but thanks to the great performance of the LHC, we are reaching levels of sensitivity where we can see beyond the Standard Model. The researchers, especially the young ones, are experiencing great excitement, looking forward to new physics.”

Over the coming days and weeks, the LHC experiments will be analysing the full 2011 data set to home in further on new physics. However, while it is possible that new physics may emerge, it is equally likely that the full 10 inverse femtobarns initially foreseen for 2011 and 2012 will be required.

As in 2010, the LHC is now being prepared for four weeks of lead-ion running, but in a new development this year, the world’s largest particle accelerator will also attempt to demonstrate that large can also be agile by colliding protons with lead ions in two dedicated periods of machine development. If successful, these tests will lead to a new strand of LHC operation, using protons to probe the internal structure of the much more massive lead ions.

This is important for the lead-ion programme, whose goal is to study quark-gluon plasma, the primordial soup of particles from which the ordinary matter of today’s visible universe evolved.

“Smashing lead ions together allows us to produce and study tiny pieces of primordial soup,” said ALICE Spokesperson Paolo Giubellino, “but as any good cook will tell you, to understand a recipe fully, it’s vital to understand the ingredients, and in the case of quark-gluon plasma, this is what proton-lead ion collisions could bring.”

Follow CERN at:
*CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a candidate for accession. Israel is an Associate Member in the pre-stage to Membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

CERN Press Office | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht The fastest light-driven current source
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht An international team of physicists a coherent amplification effect in laser excited dielectrics
25.09.2017 | Universität Kassel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>



Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

More VideoLinks >>>