Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LHC Experiments Bring New Insight Into Matter of the Primordial Universe

LHC experiments bring new insight into matter of the primordial Universe

Experiments using heavy ions at CERN1’s Large Hadron Collider (LHC) are advancing understanding of the primordial Universe. The ALICE, ATLAS and CMS collaborations have made new measurements of the kind of matter that probably existed in the first instants of the Universe. They will present their latest results at the 2012 Quark Matter conference, which starts today in Washington DC. The new findings are based mainly on the four-week LHC run with lead ions in 2011, during which the experiments collected 20 times more data than in 2010.

Just after the Big Bang, quarks and gluons – basic building blocks of matter – were not confined inside composite particles such as protons and neutrons, as they are today. Instead, they moved freely in a state of matter known as ‘quark–gluon plasma’. Collisions of lead ions in the LHC, the world’s most powerful particle accelerator, recreate for a fleeting moment conditions similar to those of the early Universe. By examining a billion or so of these collisions, the experiments have been able to make more precise measurements of the properties of matter under these extreme conditions.

“The field of heavy-ion physics is crucial for probing the properties of matter in the primordial Universe, one of the key questions of fundamental physics that the LHC and its experiments are designed to address. It illustrates how in addition to the investigation of the recently discovered Higgs-like boson, physicists at the LHC are studying many other important phenomena in both proton–proton and lead–lead collisions,” said CERN Director General Rolf Heuer.

At the conference, the ALICE, ATLAS and CMS collaborations will present more refined characterizations of the densest and hottest matter ever studied in the laboratory – 100,000 times hotter than the interior of the Sun and denser than a neutron star.

ALICE will present a wealth of new results on all aspects of the evolution in both space and time of high-density strongly interacting matter. Important studies deal with “charmed particles”, which contain a charm or anti-charm quark. Charm quarks, 100 times heavier than the up and down quarks that form normal matter, are significantly decelerated by their passage through quark–gluon plasma, offering scientists a unique tool to probe its properties. ALICE physicists will report indications that the flow in the plasma is so strong that the heavy charmed particles are dragged along by it. The experiment has also observed indications of a thermalization phenomenon, which involves the recombination of charm and anti-charm quarks to form “charmonium”.

“This is only one leading example of the scientific opportunities in reach of the ALICE experiment,” said Paolo Giubellino, spokesperson of the ALICE collaboration. “With more data still being analysed and further data-taking scheduled for next February, we are closer than ever to unravelling the properties of the primordial state of the Universe: the quark–gluon plasma.”

In the 1980s, the initial dissociation of charmonium was proposed as a direct signature for the formation of quark–gluon plasma, and first experimental indications of this dissociation were reported from fixed-target experiments at CERN’s Super Proton Synchrotron in 2000. The much higher energy of the LHC makes it possible for the first time to study similar tightly-bound states of the heavier beauty quarks. The hypothesis was that, depending on their binding energy, some of these states would “melt” in the plasma produced, while others would survive the extreme temperature. The CMS experiment now observes clear signs of the expected sequential suppression of the “quarkonium” (quark–antiquark) states.

“CMS will present important new heavy-ion results not only on quarkonium suppression, but also on bulk properties of the medium and on a variety of studies of jet quenching,” said Joseph Incandela, the CMS Spokesperson. “We are entering an exciting new era of high-precision research on strongly interacting matter at the highest energies produced in the laboratory.”

The quenching of jets is the phenomenon in which highly energetic sprays of particles break up in the dense quark–gluon plasma, giving scientists detailed information about the density and properties of the produced matter. ATLAS will report new findings on jet quenching, including a high-precision study of how the jets fragment in matter, and on the correlations between jets and electroweak bosons. The results are complementary to other exciting ones, including groundbreaking findings on the flow of the plasma.

“We have entered a new phase in which we not only observe the phenomenon of quark–gluon plasma, but where we can also make high-precision measurements using a variety of probes,” said Fabiola Gianotti, the ATLAS spokesperson. “The studies will contribute significantly to our understanding of the early Universe.”

Find out more:

. Quark Matter 2012 conference
Follow CERN at:

1CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its member states are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a candidate for accession. Israel and Serbia are associate members in the pre-stage to membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have observer status.

CERN press office | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

More VideoLinks >>>