Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LHC Experiments Bring New Insight Into Matter of the Primordial Universe

15.08.2012
LHC experiments bring new insight into matter of the primordial Universe

Experiments using heavy ions at CERN1’s Large Hadron Collider (LHC) are advancing understanding of the primordial Universe. The ALICE, ATLAS and CMS collaborations have made new measurements of the kind of matter that probably existed in the first instants of the Universe. They will present their latest results at the 2012 Quark Matter conference, which starts today in Washington DC. The new findings are based mainly on the four-week LHC run with lead ions in 2011, during which the experiments collected 20 times more data than in 2010.

Just after the Big Bang, quarks and gluons – basic building blocks of matter – were not confined inside composite particles such as protons and neutrons, as they are today. Instead, they moved freely in a state of matter known as ‘quark–gluon plasma’. Collisions of lead ions in the LHC, the world’s most powerful particle accelerator, recreate for a fleeting moment conditions similar to those of the early Universe. By examining a billion or so of these collisions, the experiments have been able to make more precise measurements of the properties of matter under these extreme conditions.

“The field of heavy-ion physics is crucial for probing the properties of matter in the primordial Universe, one of the key questions of fundamental physics that the LHC and its experiments are designed to address. It illustrates how in addition to the investigation of the recently discovered Higgs-like boson, physicists at the LHC are studying many other important phenomena in both proton–proton and lead–lead collisions,” said CERN Director General Rolf Heuer.

At the conference, the ALICE, ATLAS and CMS collaborations will present more refined characterizations of the densest and hottest matter ever studied in the laboratory – 100,000 times hotter than the interior of the Sun and denser than a neutron star.

ALICE will present a wealth of new results on all aspects of the evolution in both space and time of high-density strongly interacting matter. Important studies deal with “charmed particles”, which contain a charm or anti-charm quark. Charm quarks, 100 times heavier than the up and down quarks that form normal matter, are significantly decelerated by their passage through quark–gluon plasma, offering scientists a unique tool to probe its properties. ALICE physicists will report indications that the flow in the plasma is so strong that the heavy charmed particles are dragged along by it. The experiment has also observed indications of a thermalization phenomenon, which involves the recombination of charm and anti-charm quarks to form “charmonium”.

“This is only one leading example of the scientific opportunities in reach of the ALICE experiment,” said Paolo Giubellino, spokesperson of the ALICE collaboration. “With more data still being analysed and further data-taking scheduled for next February, we are closer than ever to unravelling the properties of the primordial state of the Universe: the quark–gluon plasma.”

In the 1980s, the initial dissociation of charmonium was proposed as a direct signature for the formation of quark–gluon plasma, and first experimental indications of this dissociation were reported from fixed-target experiments at CERN’s Super Proton Synchrotron in 2000. The much higher energy of the LHC makes it possible for the first time to study similar tightly-bound states of the heavier beauty quarks. The hypothesis was that, depending on their binding energy, some of these states would “melt” in the plasma produced, while others would survive the extreme temperature. The CMS experiment now observes clear signs of the expected sequential suppression of the “quarkonium” (quark–antiquark) states.

“CMS will present important new heavy-ion results not only on quarkonium suppression, but also on bulk properties of the medium and on a variety of studies of jet quenching,” said Joseph Incandela, the CMS Spokesperson. “We are entering an exciting new era of high-precision research on strongly interacting matter at the highest energies produced in the laboratory.”

The quenching of jets is the phenomenon in which highly energetic sprays of particles break up in the dense quark–gluon plasma, giving scientists detailed information about the density and properties of the produced matter. ATLAS will report new findings on jet quenching, including a high-precision study of how the jets fragment in matter, and on the correlations between jets and electroweak bosons. The results are complementary to other exciting ones, including groundbreaking findings on the flow of the plasma.

“We have entered a new phase in which we not only observe the phenomenon of quark–gluon plasma, but where we can also make high-precision measurements using a variety of probes,” said Fabiola Gianotti, the ATLAS spokesperson. “The studies will contribute significantly to our understanding of the early Universe.”

Find out more:

. Quark Matter 2012 conference
http://qm2012.bnl.gov/
. ALICE
http://aliceinfo.cern.ch/Public/Welcome.html
. ATLAS
http://www.atlas.ch/
. CMS
http://cms.web.cern.ch/news/new-cms-heavy-ion-results-quark-matter-2012-conference
Follow CERN at:
• www.cern.ch
• http://twitter.com/cern/
• http://www.youtube.com/user/CERNTV
• http://www.quantumdiaries.org/

1CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its member states are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a candidate for accession. Israel and Serbia are associate members in the pre-stage to membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have observer status.

CERN press office | Newswise Science News
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>