Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LED efficiency puzzle solved by UC Santa Barbara theorists

20.04.2011
Researchers at the University of California, Santa Barbara, say they've figured out the cause of a problem that's made light-emitting diodes (LEDs) impractical for general lighting purposes. Their work will help engineers develop a new generation of high-performance, energy-efficient lighting that could replace incandescent and fluorescent bulbs.

"Identifying the root cause of the problem is an indispensable first step toward devising solutions," says Chris Van de Walle, a professor in the Materials Department at UC Santa Barbara who heads the research group that carried out the work.

Van de Walle and his colleagues are working to improve the performance of nitride-based LEDs, which are efficient, non-toxic and long-lasting light sources. They investigated a phenomenon referred to as "droop"?the drop in efficiency that occurs in these LEDs when they're operating at the high powers required to illuminate a room. The cause of this decline has been the subject of considerable debate, but the UC Santa Barbara researchers say they've figured out the mechanism responsible for the effect by performing quantum-mechanical calculations.

LED droop, they conclude, can be attributed to Auger recombination, a process that occurs in semiconductors, in which three charge-carriers interact without giving off light. The researchers also discovered that indirect Auger effects, which involve a scattering mechanism, are significant?a finding that accounts for the discrepancy between the observed degree of droop and that predicted by other theoretical studies, which only accounted for direct Auger processes.

In nitride LEDs, "These indirect processes form the dominant contribution to the Auger recombination rate," says Emmanouil Kioupakis, a postdoctoral researcher at UC Santa Barbara and lead author of a paper published online April 19 in Applied Physics Letters. The other authors are Van de Walle, Patrick Rinke, now with the Fritz Haber Institute in Germany, and Kris Delaney, a project scientist at UC Santa Barbara.

LED droop can't be eliminated because Auger effects are intrinsic, but it could be minimized, the researchers say, by using thicker quantum wells in LEDs or growing devices along non-polar or semi-polar growth directions in order to keep carrier density low.

"With Auger recombination now established as the culprit, we can focus on creative approaches to suppress or circumvent this loss mechanism," Van de Walle says.

The work was supported by the Center for Energy Efficient Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, and by UC Santa Barbara's Solid State Lighting and Energy Center.

Computational resources were provided by the U.S. Department of Energy's National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, the California NanoSystems Institute's Computing Facility at UC Santa Barbara, and the National Science Foundation-funded TeraGrid.

Anna Davison | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>