Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading-Edge Data Analytics and Visualization Enable Breakthrough Science on Blue Gene/P

14.04.2009
Most science research programs that run on high-performance computers like the IBM Blue Gene/P Intrepid at the Argonne Leadership Computing Facility (ALCF) generate enormous quantities of data that represent the results of their calculations. But scientists can also use the ALCF to visualize, explore and communicate their findings as highly accurate simulations and often beautiful images.

The ALCF's ability to visualize such enormous quantities of data is made possible by of the world's largest graphics processing units (GPU). Nicknamed Eureka, this installation of NVIDIA Quadro Plex S4 external GPUs allows researchers to better understand the data they produce with Intrepid at the ALCF. The powerful installation provides more than 111 teraflops and more than 3.2 terabytes of RAM.

"Eureka provides a vital link between simulation and analysis by allowing scientists to probe and interrogate their data in an interactive manner," said Argonne computational scientist Paul Fischer. Since Eureka and Intrepid share a disk, there is no need to move data between machines. " Eureka dramatically reduces the amount of time needed to create these hugely complex visualizations, while greatly boosting their quality."

The ALCF's Intrepid provides resources for the U.S. Department of Energy's (DOE) Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, which supports computationally intensive projects from industry, scientific researchers and research organizations.

Using software developed both at Argonne and externally, computer scientists have visualized data with Eureka for DOE INCITE projects focusing on turbulent thermal transport in sodium-cooled nuclear reactor cores, cardiac rhythm disorders and Type Ia supernovae, which are among the brightest and most powerful exploding stars in the universe.

"Eureka delivers a quantum leap in visual compute density, enabling breakthrough levels of productivity and capability in visualization and data analysis," said Craig Dunwoody, CEO of GraphStream, Inc. in Belmont, Calif., the supplier of scalable computer systems that provided Eureka.

Eureka incorporates four high-end graphics cards and places them in a configuration known as a "pizza box." Because the cards are packed so closely together, this configuration helps to reduce the complicated power and cooling issues associated with the graphics cards. Eureka needs only four racks to hold the same number of cards that previous configurations required more than 10 racks to accommodate.

The heart of Eureka's data-management system contains a nine-switch complex that supports up to 2,048 connections, each of which simultaneously exchanges data at roughly 1 billion bytes per second. The storage system consists of a bank of more than 10,000 disk drives that will send and receive data from the Blue Gene/P's more than 100,000 processors. Altogether, this system can deliver nearly 80 billion bytes per second to and from the disk—the equivalent of transferring the content of 100 full CDs every second.

Argonne operates the ALCF for the DOE Office of Science as part of the larger DOE Leadership Computing Facility strategy. DOE leads the world in providing the most capable civilian supercomputers for science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Eleanor Taylor | Newswise Science News
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>