Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Following the Leader Can be a Drag, According to Student's Research on Flapping Flags

11.11.2008
Graduate student Leif Ristroph found that two or more flexible objects in a flow - flags flapping in the wind, for example - experience drag very differently from rigid objects in a similar flow.

From the Tour de France to NASCAR, competitors and fans know that speed is only part of the equation. Strategy -- and the ability to use elements like aerodynamic drafting, which makes it easier to follow closely behind a leader than to be out in front -- is also critical.

But in some cases, drafting happens in reverse: It's the leader of a pack who experiences reduced drag, while the followers encounter more resistance -- and have to expend more energy to keep up.

In research published in the Nov. 7 issue of Physical Review Letters (Vol. 101: No. 194502), Cornell fourth-year physics graduate student Leif Ristroph and New York University researcher Jun Zhang used a simple tabletop experiment to show that two or more flexible objects in a flow -- flags flapping in the wind, for example -- experience drag very differently than rigid objects in a similar flow.

The findings could help biologists understand a variety of phenomena, including why animals like fish and birds travel in groups.

"It's counterintuitive," said Ristroph. "People who have studied schooling fish and flocking birds always postulate that they flock because the ones downstream can save energy, and the guy who's at the front has to work harder. Here's a case where that gets turned on its head."

To test the effects of a flowing fluid on flexible objects, Ristroph created a thin film of soapy water -- the beginning of a giant soap bubble -- stretched between two fishing lines and constantly refreshed with a flow of water from the top. Into the membrane, he inserted pieces of thin rubber (the flags) -- attached to perpendicular wire "flagpoles."

To measure the forces on the flags as water flowed past them, Ristroph attached small mirrors -- actually microscope cover slips -- to the far ends of the "flagpoles." As the flags flapped in the flow, the slightly flexible poles moved correspondingly -- and by shining a laser light on the mirrors, Ristroph could see the movements magnified and traced on a far wall.

He also used optical interferometry -- a technique based on the way light waves interfere with each other -- to measure the fluid flow around the flapping flags.

Instead of finding that the front flag took the brunt of the drag and following flags experienced less resistance, he found that for two flags close together, the front flag flapped less and thus experienced less drag -- even relative to a single flag without a follower. For the follower, he found the reverse: The flag oscillated more and experienced correspondingly more drag.

"That was completely unexpected," Ristroph said. Additional experiments with multiple flags and different spacing showed that the effect is consistent for closely spaced objects and drops off as the space between them increases.

The effects aren't fully understood, Ristroph said. "It appears that the follower is sort of confining the flow at the trailing edge of the leader, so it feels like he can't flap as hard; [and therefore] the amplitude of the leader is reduced." For the follower, the oscillations of the leader likely cause a resonating effect, increasing the follower's flapping and thus its drag.

"This is now like a two-way conversation, where the fluid talks to the object, and the object talks back," Ristroph said.

"Simulating this is very difficult," he added. "The theory and the simulation really cannot handle how to deal with the flow and an object that has flexibility.

"You often have to do the experiment," he said. "And when you do the experiment you can get something that is counterintuitive."

Ristroph performed the research during a summer fellowship at NYU through the Interdisciplinary Graduate Training in Nonlinear Systems program, which is funded by the National Science Foundation.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>