Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Following the Leader Can be a Drag, According to Student's Research on Flapping Flags

11.11.2008
Graduate student Leif Ristroph found that two or more flexible objects in a flow - flags flapping in the wind, for example - experience drag very differently from rigid objects in a similar flow.

From the Tour de France to NASCAR, competitors and fans know that speed is only part of the equation. Strategy -- and the ability to use elements like aerodynamic drafting, which makes it easier to follow closely behind a leader than to be out in front -- is also critical.

But in some cases, drafting happens in reverse: It's the leader of a pack who experiences reduced drag, while the followers encounter more resistance -- and have to expend more energy to keep up.

In research published in the Nov. 7 issue of Physical Review Letters (Vol. 101: No. 194502), Cornell fourth-year physics graduate student Leif Ristroph and New York University researcher Jun Zhang used a simple tabletop experiment to show that two or more flexible objects in a flow -- flags flapping in the wind, for example -- experience drag very differently than rigid objects in a similar flow.

The findings could help biologists understand a variety of phenomena, including why animals like fish and birds travel in groups.

"It's counterintuitive," said Ristroph. "People who have studied schooling fish and flocking birds always postulate that they flock because the ones downstream can save energy, and the guy who's at the front has to work harder. Here's a case where that gets turned on its head."

To test the effects of a flowing fluid on flexible objects, Ristroph created a thin film of soapy water -- the beginning of a giant soap bubble -- stretched between two fishing lines and constantly refreshed with a flow of water from the top. Into the membrane, he inserted pieces of thin rubber (the flags) -- attached to perpendicular wire "flagpoles."

To measure the forces on the flags as water flowed past them, Ristroph attached small mirrors -- actually microscope cover slips -- to the far ends of the "flagpoles." As the flags flapped in the flow, the slightly flexible poles moved correspondingly -- and by shining a laser light on the mirrors, Ristroph could see the movements magnified and traced on a far wall.

He also used optical interferometry -- a technique based on the way light waves interfere with each other -- to measure the fluid flow around the flapping flags.

Instead of finding that the front flag took the brunt of the drag and following flags experienced less resistance, he found that for two flags close together, the front flag flapped less and thus experienced less drag -- even relative to a single flag without a follower. For the follower, he found the reverse: The flag oscillated more and experienced correspondingly more drag.

"That was completely unexpected," Ristroph said. Additional experiments with multiple flags and different spacing showed that the effect is consistent for closely spaced objects and drops off as the space between them increases.

The effects aren't fully understood, Ristroph said. "It appears that the follower is sort of confining the flow at the trailing edge of the leader, so it feels like he can't flap as hard; [and therefore] the amplitude of the leader is reduced." For the follower, the oscillations of the leader likely cause a resonating effect, increasing the follower's flapping and thus its drag.

"This is now like a two-way conversation, where the fluid talks to the object, and the object talks back," Ristroph said.

"Simulating this is very difficult," he added. "The theory and the simulation really cannot handle how to deal with the flow and an object that has flexibility.

"You often have to do the experiment," he said. "And when you do the experiment you can get something that is counterintuitive."

Ristroph performed the research during a summer fellowship at NYU through the Interdisciplinary Graduate Training in Nonlinear Systems program, which is funded by the National Science Foundation.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>