Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Following the Leader Can be a Drag, According to Student's Research on Flapping Flags

11.11.2008
Graduate student Leif Ristroph found that two or more flexible objects in a flow - flags flapping in the wind, for example - experience drag very differently from rigid objects in a similar flow.

From the Tour de France to NASCAR, competitors and fans know that speed is only part of the equation. Strategy -- and the ability to use elements like aerodynamic drafting, which makes it easier to follow closely behind a leader than to be out in front -- is also critical.

But in some cases, drafting happens in reverse: It's the leader of a pack who experiences reduced drag, while the followers encounter more resistance -- and have to expend more energy to keep up.

In research published in the Nov. 7 issue of Physical Review Letters (Vol. 101: No. 194502), Cornell fourth-year physics graduate student Leif Ristroph and New York University researcher Jun Zhang used a simple tabletop experiment to show that two or more flexible objects in a flow -- flags flapping in the wind, for example -- experience drag very differently than rigid objects in a similar flow.

The findings could help biologists understand a variety of phenomena, including why animals like fish and birds travel in groups.

"It's counterintuitive," said Ristroph. "People who have studied schooling fish and flocking birds always postulate that they flock because the ones downstream can save energy, and the guy who's at the front has to work harder. Here's a case where that gets turned on its head."

To test the effects of a flowing fluid on flexible objects, Ristroph created a thin film of soapy water -- the beginning of a giant soap bubble -- stretched between two fishing lines and constantly refreshed with a flow of water from the top. Into the membrane, he inserted pieces of thin rubber (the flags) -- attached to perpendicular wire "flagpoles."

To measure the forces on the flags as water flowed past them, Ristroph attached small mirrors -- actually microscope cover slips -- to the far ends of the "flagpoles." As the flags flapped in the flow, the slightly flexible poles moved correspondingly -- and by shining a laser light on the mirrors, Ristroph could see the movements magnified and traced on a far wall.

He also used optical interferometry -- a technique based on the way light waves interfere with each other -- to measure the fluid flow around the flapping flags.

Instead of finding that the front flag took the brunt of the drag and following flags experienced less resistance, he found that for two flags close together, the front flag flapped less and thus experienced less drag -- even relative to a single flag without a follower. For the follower, he found the reverse: The flag oscillated more and experienced correspondingly more drag.

"That was completely unexpected," Ristroph said. Additional experiments with multiple flags and different spacing showed that the effect is consistent for closely spaced objects and drops off as the space between them increases.

The effects aren't fully understood, Ristroph said. "It appears that the follower is sort of confining the flow at the trailing edge of the leader, so it feels like he can't flap as hard; [and therefore] the amplitude of the leader is reduced." For the follower, the oscillations of the leader likely cause a resonating effect, increasing the follower's flapping and thus its drag.

"This is now like a two-way conversation, where the fluid talks to the object, and the object talks back," Ristroph said.

"Simulating this is very difficult," he added. "The theory and the simulation really cannot handle how to deal with the flow and an object that has flexibility.

"You often have to do the experiment," he said. "And when you do the experiment you can get something that is counterintuitive."

Ristroph performed the research during a summer fellowship at NYU through the Interdisciplinary Graduate Training in Nonlinear Systems program, which is funded by the National Science Foundation.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>