Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers can lengthen quantum bit memory by 1,000 times

26.06.2009
Physicists have found a way to drastically prolong the shelf life of quantum bits, the 0s and 1s of quantum computers.

These precarious bits, formed in this case by arrays of semiconductor quantum dots containing a single extra electron, are easily perturbed by magnetic field fluctuations from the nuclei of the atoms creating the quantum dot.

This perturbation causes the bits to essentially forget the piece of information they were tasked with storing.

A quantum dot is a semiconductor nanostructure that is one candidate for creating quantum bits.

The scientists, including the University of Michigan's Duncan Steel, used lasers to elicit a previously undiscovered natural feedback reaction that stabilizes the quantum dot's magnetic field, lengthening the stable existence of the quantum bit by several orders of magnitude, or more than 1,000 times.

The findings are published in the June 25 edition of Nature.

Because of their ability to represent multiple states simultaneously, quantum computers could theoretically factor numbers dramatically faster and with smaller computers than conventional computers. For this reason, they could vastly improve computer security.

"In our approach, the quantum bit for information storage is an electron spin confined to a single dot in a semiconductor like indium arsenide. Rather than representing a 0 or a 1 as a transistor does in a classical computer, a quantum bit can be a linear combination of 0 and 1. It's sort of like hitting two piano keys at the same time," said Steel, a professor in the Department of Physics and the Robert J. Hiller Professor of Electrical Engineering and Computer Science.

"One of the serious problems in quantum computing is that anything that disturbs the phase of one of these spins relative to the other causes a loss of coherence and destroys the information that was stored. It is as though one of the two notes on the piano is silenced, leaving only the other note."

Spin is an intrinsic property of the electron that isn't rotation, but is more like magnetic poles. Electrons are said to have spin up or down, which represent the 0s and 1s.

A major cause of information loss in a popular class of semiconductors called 3/5 materials is the interaction of the electron (the quantum bit) with the nuclei of the atoms in the quantum dot holding the electron. Trapping the electron in a particular spin, as is necessary in quantum computers, gives rise to a small magnetic field that couples with the magnetic field in the nuclei and breaks down the memory in a few billionths of a second.

By exciting the quantum dot with a laser, the scientists were able to block the interaction of these magnetic fields. The laser causes an electron in the quantum dot to jump to a higher energy level, leaving behind a charged hole in the electron cloud. This hole, or space vacated by an electron, also has a magnetic field due to the collective spin of the remaining electron cloud. It turns out that the hole acts directly with the nuclei and controls its magnetic field without any intervention from outside except the fixed excitation by the lasers to create the hole.

"This discovery was quite unexpected," Steel said. "Naturally occurring, nonlinear feedback in physical systems is rarely observed. We found a remarkable piece of physics in nature. We still have other major technical obstacles, but our work shows that one of the major hurdles to quantum computers that we thought might be a show-stopper isn't one," Steel said.

The paper is called "Optically-controlled locking of the nuclear field via coherent dark-state spectroscopy." Other authors are with the Naval Research Laboratory, the University of California San Diego, and the University of Hong Kong. The research is funded by the U.S. Army Research Office, the Air Force Office of Scientific Research, the Office of Naval Research, The National Security Agency's Laboratory for Physical Sciences, the Intelligence Advanced Research Projects Agency and the National Science Foundation.

For more information Duncan Steel: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1226

Michigan Engineering:

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://www.engin.umich.edu/

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>