Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers Generate Underwater Sound

08.09.2009
Scientists at the Naval Research Laboratory are developing a new technology for use in underwater acoustics. The new technology uses flashes of laser light to remotely create underwater sound.

The new acoustic source has the potential to expand and improve both Naval and commercial underwater acoustic applications, including undersea communications, navigation, and acoustic imaging. Dr. Ted Jones, a physicist in the Plasma Physics Division, is leading a team of researchers from the Plasma Physics, Acoustics, and Marine Geosciences Divisions in developing this acoustic source.

Efficient conversion of light into sound can be achieved by concentrating the light sufficiently to ionize a small amount of water, which then absorbs laser energy and superheats. The result is a small explosion of steam, which can generate a 220 decibel pulse of sound. Optical properties of water can be manipulated with very intense laser light to act like a focusing lens, allowing nonlinear self-focusing (NSF) to take place. In addition, the slightly different colors of the laser, which travel at different speeds in water due to group velocity dispersion (GVD), can be arranged so that the pulse also compresses in time as it travels through water, further concentrating the light. By using a combination of GVD and NSF, controlled underwater compression of optical pulses can be attained.

The driving laser pulse has the ability to travel through both air and water, so that a compact laser on either an underwater or airborne platform can be used for remote acoustic generation. Since GVD and NSF effects are much stronger in water than air, a properly tailored laser has the ability to travel many hundreds of meters through air, remaining relatively unchanged, then quickly compress upon entry into the water. Atmospheric laser propagation is useful for applications where airborne lasers produce underwater acoustic signals without any required hardware in the water, such as undersea communications from aircraft.

... more about:
»Division »GVD »NSF »Naval »Physic »Plasma »Sound »laser system »underwater

Also, commercially available, high-repetition-rate pulsed lasers, steered by a rapidly movable mirror, can generate arbitrary arrays of phased acoustic sources. On a compact underwater platform with an acoustic receiver, such a setup can rapidly generate oblique-angle acoustic scattering data, for imaging and identifying underwater objects. This would be a significant addition to traditional direct backscattering acoustic data.

Amanda Bowie | EurekAlert!
Further information:
http://www.nrl.navy.mil

Further reports about: Division GVD NSF Naval Physic Plasma Sound laser system underwater

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>