Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New laser technique may help find supernova

One single atom of a certain isotope of hafnium found on Earth would prove that a supernova once exploded near our solar system.

The problem is how to find such an atom - among billions of others. Researchers at the University of Gothenburg, Sweden, have developed a laser technique that, in combination with standard techniques, may be able to do the job.

Hafnium is a common metallic element used in nuclear reactors. However, one of its isotopes is hard to find since it is only made when a supernova explodes. This means that if the isotope, called 182Hf, were discovered on Earth, it would prove that a supernova once exploded near our solar system. This has caused physicists around the world to work hard to find the isotope.

One among billions
Unfortunately, this particular isotope is difficult to distinguish from other atoms - only one in many billions of hafnium atoms is believed to be of the sought-after kind. Researcher Pontus Andersson from the Department of Physics at the University of Gothenburg and colleagues from USA, Germany and Austria have developed a laser technique that can be used to reject irrelevant atoms, and therefore isolate the unique 182Hf.
Laser technique
In technical terms, their new technique concerns negative ions, which are atoms or molecules with one extra electron. By using laser to detach the extra electron and at the same time register the level of energy needed to do this, it is known that the strength of the bond between the extra electron and the rest of the atom or molecule varies among different substances.
Possible detecion
This means that by choosing a certain wavelength of the laser light, they can detach the extra electron from some elements while ions of other elements remain intact. Consequently, if 182Hf exists on Earth, then Andersson and his colleagues should be able to find it, simply by using laser light to remove sufficient amount of other, more common, interfering atoms, to allow detection of 182Hf by conventional methods.
International collaboration
The new technique is a product of advanced atomic physics experiments conducted together with Stockholm University, The VERA institute i Vienna, Austria and Oak Ridge National Lab in USA.

'Our goal is to develop a method that can be of aid when searching for very unusual isotopes. In many cases the standard methods used are hampered by other, interfering atoms. The technique is still in its infancy, but we have shown that our laser beam can remove 99.99 % of the interfering ions in a beam without destroying the ions we are looking for', says Andersson.

Journal reference:
P Andersson, A O Lindahl, D Hanstorp and D J Pegg. Observation of the 2S1=2
metastable state in Pt¡. Physical Review A 79, 022502 (2009)
P Andersson, J Sandstr?om, D Hanstorp, N D Gibson, KWendt, D J Pegg and R D
Thomas. Selective detection of 13C by laser photodetachment mass spectrometry.
Nuclear Instruments and Methods in Physics Research B 266 36673673 (2008)

Helena Aaberg | idw
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>