Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New laser technique may help find supernova

12.08.2009
One single atom of a certain isotope of hafnium found on Earth would prove that a supernova once exploded near our solar system.

The problem is how to find such an atom - among billions of others. Researchers at the University of Gothenburg, Sweden, have developed a laser technique that, in combination with standard techniques, may be able to do the job.

Hafnium is a common metallic element used in nuclear reactors. However, one of its isotopes is hard to find since it is only made when a supernova explodes. This means that if the isotope, called 182Hf, were discovered on Earth, it would prove that a supernova once exploded near our solar system. This has caused physicists around the world to work hard to find the isotope.

One among billions
Unfortunately, this particular isotope is difficult to distinguish from other atoms - only one in many billions of hafnium atoms is believed to be of the sought-after kind. Researcher Pontus Andersson from the Department of Physics at the University of Gothenburg and colleagues from USA, Germany and Austria have developed a laser technique that can be used to reject irrelevant atoms, and therefore isolate the unique 182Hf.
Laser technique
In technical terms, their new technique concerns negative ions, which are atoms or molecules with one extra electron. By using laser to detach the extra electron and at the same time register the level of energy needed to do this, it is known that the strength of the bond between the extra electron and the rest of the atom or molecule varies among different substances.
Possible detecion
This means that by choosing a certain wavelength of the laser light, they can detach the extra electron from some elements while ions of other elements remain intact. Consequently, if 182Hf exists on Earth, then Andersson and his colleagues should be able to find it, simply by using laser light to remove sufficient amount of other, more common, interfering atoms, to allow detection of 182Hf by conventional methods.
International collaboration
The new technique is a product of advanced atomic physics experiments conducted together with Stockholm University, The VERA institute i Vienna, Austria and Oak Ridge National Lab in USA.

'Our goal is to develop a method that can be of aid when searching for very unusual isotopes. In many cases the standard methods used are hampered by other, interfering atoms. The technique is still in its infancy, but we have shown that our laser beam can remove 99.99 % of the interfering ions in a beam without destroying the ions we are looking for', says Andersson.

Journal reference:
P Andersson, A O Lindahl, D Hanstorp and D J Pegg. Observation of the 2S1=2
metastable state in Pt¡. Physical Review A 79, 022502 (2009)
P Andersson, J Sandstr?om, D Hanstorp, N D Gibson, KWendt, D J Pegg and R D
Thomas. Selective detection of 13C by laser photodetachment mass spectrometry.
Nuclear Instruments and Methods in Physics Research B 266 36673673 (2008)

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/20071
http://www.science.gu.se/english/News/News_detail/New_laser_technique_may_help_find_supernova_.cid885745

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>