Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser pulses control single electrons in complex molecules

Predatory fish are well aware of the problem: In a swarm of small fish it is hard to isolate prey. A similar situation can be found in the microcosm of atoms and molecules, whose behavior is influenced by “swarms” of electrons.

In order to achieve control over single electrons in a bunch, ultrashort light pulses of a few femtoseconds duration are needed. Physicists of the Max Planck Institute of Quantum Optics (MPQ) in Garching and chemists of the Ludwig-Maximilians-Universität (LMU) in Munich succeeded for the first time to use light for controlling single, negatively charged elementary particles in a bunch of electrons.

The scientists achieved a major milestone that they aimed for within the excellence cluster “Munich Center for Advanced Photonics” (MAP). (Physical Review Letters, 1 September 2009).

Electrons are extremely fast moving particles. In atoms and molecules they move on attosecond timescales. An attosecond is only a billionth of a billionth of a second. With light pulses that last only a few femtoseconds down to attoseconds it is possible to achieve control over these particles and to interact with them on the timescale of their motion.

These short light pulses exhibit strong electric and magnetic fields influencing the charged particles. A femtosecond lasts 1000 times longer than an attosecond. In molecules with only a single electron, such as the deuterium molecular ion, their control with such light pulses is relatively easy. This was demonstrated in 2006 by a team of physicists including Professor Marc Vrakking and Dr. Matthias Kling from AMOLF in Amsterdam and Professor Ferenc Krausz in Garching (MPQ).

Scientists led by the junior research group leader Dr. Matthias Kling (MPQ) in collaboration with Professor Marc Vrakking (AMOLF) and Professor Regina de Vivie-Riedle (LMU) have managed to control and monitor the outer electrons from the valence shell of the complex molecule carbon monoxide (CO) utilizing the electric field waveform of laser pulses. Carbon monoxide has 14 electrons. With increasing number of electrons in the molecule the control over single electrons becomes difficult as their states lie energetically very close to each other.

In their experiments the scientists used visible (740 nm) laser pulses with 4 femtoseconds duration. The control was experimentally determined via an asymmetric distribution of C+ and of O+ fragments after the breaking of the molecular bond. The measurement of C+ and O+ fragments implies a dynamic charge shift along the molecular axis in one or the other direction, controlled via the laser pulse.

The femtosecond laser pulses initially detached an electron from a CO molecule. Subsequently the electron was driven by the laser field away from and back to the ion, where it transferred its energy in a collision. The whole process took only ca. 1.7 femtoseconds. ”The collision produces an electronic wave packet which induces a directional movement of electrons along the molecular axis,” says Regina de Vivie-Riedle. ”The excitation and subsequent interaction with the remainder of the intense laser pulse leads to a coupling of electron and nuclear motion and gives a contribution to the observed asymmetry,” explains Matthias Kling.

The scientists could also image the structure and form of the outer two electron orbitals of carbon monoxide via the ionization process. The extremely short femtosecond laser pulses allowed the scientists to explore this process in the outermost orbitals. They found the ionization of the molecules to take place with a distinct angular dependence with respect to the laser polarization direction. This observation was found to be in good agreement with theoretical calculations and also gave a contribution to the observed asymmetry. The scientists could show that the strength of this asymmetry strongly depends on the duration of the laser pulses.

With their experiments and calculations, the researchers from Garching and Munich have achieved an important milestone that they aimed for within the excellence cluster “Munich Center for Advanced Photonics” (MAP). The goals were to achieve and observe the control of single electrons within a multi-electron system.

Electrons are present in all important microscopic biological and technical processes. Their extremely fast motion on the attosecond timescale, determines biological and chemical processes and also the speed of microprocessors – technology at the heart of computing. With their experiments the researchers have made a further, important step towards the control of chemical reactions with light. The results are also related to basic research on lightwave electronics aiming at computing speeds on attosecond timescales.

Full bibliographic information
I. Znakovskaya, P. von den Hoff, S. Zherebtsov, A. Wirth, O. Herrwerth, M.J.J. Vrakking, R. de Vivie-Riedle, M.F. Kling:
“Attosecond control of electron dynamics in carbon monoxide”
Physical Review Letters (online version: EID 103/103002, 1 September 2009)

Julia Zahlten | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>