Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Polishing Accelerates Surface Finish of Dental and Blood-carrying Implants

10.01.2013
On 28 November 2012, the partners of the project “MediSurf”, funded by the German Federal Ministry of Economics and Technology, presented their research results in Aachen, Germany.

Led by the Fraunhofer Institute for Laser Technology ILT, a consort of seven project partners addressed the task of reducing the time needed to process dental and blood-carrying implants while maintaining their high bio- and haemocompatibility. To accomplish this, a flexible and cost-effective plant, among others, was developed to automatically polish implants.


Untreated and laser-polished component of the ventricular assist system INCOR made out of titanium.
Fraunhofer ILT, Aachen/Germany

The surface quality of an implant plays a significant role if it is to be deployed in the body successfully. For example, bone implants require a porous structure so that cells can grow into them well. Other implants, however, need as smooth a surface as possible to keep bacteria from finding a hold on them and the surrounding tissue from being damaged. The project “MediSurf” has made these kinds of implants the object of its research, which has recently come to an end.

A main focus was to optimize the surface of the titanium ventricular assist system INCOR, made by the company Berlin Heart. The project aimed at reducing production time and, at the same time, guaranteeing high haemocompatibility. This means the implant should leave blood corpuscles undamaged and corpuscles should be prevented from settling on it to the largest extent possible. Blot clots are prevented from forming, thus significantly reducing the risk of heart attacks and strokes.

Initially, the question had to be resolved if laser-based polishing of the surface can reach the same haemocompatibility as obtained with conventionally used manual polishing. To answer this, researchers at the Fraunhofer ILT developed a process to polish blood-carrying implants with lasers. “We are able to reduce the micro-roughness to such an extent that the implant exhibits the best possible haemocompatibility. However, we began with very little information on exactly what quality the surface had to have for this purpose,” explains project leader Christian Nüsser from the Fraunhofer ILT. “For this reason, we had to test various parameters to reach the desired result.”

Laser polishing: quicker, cleaner and more environmentally friendly

The implants were tested as to their haemocompatibility by the University Hospital Münster (UKM). The result: laser-polished implants exhibit the same haemocompatibility as those polished manually, but laser polishing is 30 to 40 times faster than manual polishing. With large lot sizes, this means an enormous reduction in production costs. In addition, laser polishing exhibits a higher reproducibility. It guarantees a homogeneous smoothness over the entire surface of a free-form geometrical component, even on corners and edges, which are difficult to reach when polished manually. Unlike in conventional processes, the edges are not rounded off when polished with lasers, thus guaranteeing a high geometrical accuracy of the component. Another advantage of laser polishing lies in its far cleaner and more environmentally friendly process. In contrast to manual polishing, no polishing or abrasive materials are used, leaving no chemical residues remaining on the implant itself.

Inexpensive and flexible mechanical engineering for series production

Alongside this polishing process, a prototype plant has been developed at the Fraunhofer ILT for automated laser polishing of implants. For the first time, the scientists have developed a glove box with a six-axis articulated robot, which can grasp the implants and process a complete series of them on its own. This automated machine engineering makes the entire process less expensive, more flexible and appropriate for industrial series production.

Project partners

BEGO Implant Systems GmbH & Co. KG
Berlin Heart GmbH
Clean-Lasersysteme GmbH
DENTSPLY Implants Manufacturing GmbH
Fraunhofer Institute for Laser Technology ILT
Musterbau Galetzka
University Hospital Münster:
Department of Anesthesiology, Operative Medicine and Palliative Care
Contacts
Dipl.-Ing. Christian Nüsser
Polishing Group
Phone +49 241 8906-669
christian.nuesser@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Dr.-Ing. Edgar Willenborg
Head of the Polishing Group
Phone +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>