Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Polishing Accelerates Surface Finish of Dental and Blood-carrying Implants

10.01.2013
On 28 November 2012, the partners of the project “MediSurf”, funded by the German Federal Ministry of Economics and Technology, presented their research results in Aachen, Germany.

Led by the Fraunhofer Institute for Laser Technology ILT, a consort of seven project partners addressed the task of reducing the time needed to process dental and blood-carrying implants while maintaining their high bio- and haemocompatibility. To accomplish this, a flexible and cost-effective plant, among others, was developed to automatically polish implants.


Untreated and laser-polished component of the ventricular assist system INCOR made out of titanium.
Fraunhofer ILT, Aachen/Germany

The surface quality of an implant plays a significant role if it is to be deployed in the body successfully. For example, bone implants require a porous structure so that cells can grow into them well. Other implants, however, need as smooth a surface as possible to keep bacteria from finding a hold on them and the surrounding tissue from being damaged. The project “MediSurf” has made these kinds of implants the object of its research, which has recently come to an end.

A main focus was to optimize the surface of the titanium ventricular assist system INCOR, made by the company Berlin Heart. The project aimed at reducing production time and, at the same time, guaranteeing high haemocompatibility. This means the implant should leave blood corpuscles undamaged and corpuscles should be prevented from settling on it to the largest extent possible. Blot clots are prevented from forming, thus significantly reducing the risk of heart attacks and strokes.

Initially, the question had to be resolved if laser-based polishing of the surface can reach the same haemocompatibility as obtained with conventionally used manual polishing. To answer this, researchers at the Fraunhofer ILT developed a process to polish blood-carrying implants with lasers. “We are able to reduce the micro-roughness to such an extent that the implant exhibits the best possible haemocompatibility. However, we began with very little information on exactly what quality the surface had to have for this purpose,” explains project leader Christian Nüsser from the Fraunhofer ILT. “For this reason, we had to test various parameters to reach the desired result.”

Laser polishing: quicker, cleaner and more environmentally friendly

The implants were tested as to their haemocompatibility by the University Hospital Münster (UKM). The result: laser-polished implants exhibit the same haemocompatibility as those polished manually, but laser polishing is 30 to 40 times faster than manual polishing. With large lot sizes, this means an enormous reduction in production costs. In addition, laser polishing exhibits a higher reproducibility. It guarantees a homogeneous smoothness over the entire surface of a free-form geometrical component, even on corners and edges, which are difficult to reach when polished manually. Unlike in conventional processes, the edges are not rounded off when polished with lasers, thus guaranteeing a high geometrical accuracy of the component. Another advantage of laser polishing lies in its far cleaner and more environmentally friendly process. In contrast to manual polishing, no polishing or abrasive materials are used, leaving no chemical residues remaining on the implant itself.

Inexpensive and flexible mechanical engineering for series production

Alongside this polishing process, a prototype plant has been developed at the Fraunhofer ILT for automated laser polishing of implants. For the first time, the scientists have developed a glove box with a six-axis articulated robot, which can grasp the implants and process a complete series of them on its own. This automated machine engineering makes the entire process less expensive, more flexible and appropriate for industrial series production.

Project partners

BEGO Implant Systems GmbH & Co. KG
Berlin Heart GmbH
Clean-Lasersysteme GmbH
DENTSPLY Implants Manufacturing GmbH
Fraunhofer Institute for Laser Technology ILT
Musterbau Galetzka
University Hospital Münster:
Department of Anesthesiology, Operative Medicine and Palliative Care
Contacts
Dipl.-Ing. Christian Nüsser
Polishing Group
Phone +49 241 8906-669
christian.nuesser@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Dr.-Ing. Edgar Willenborg
Head of the Polishing Group
Phone +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>