Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser physics: Getting silicon into order

04.03.2011
Short pulses of laser light can crystallize amorphous silicon and create a nanostructured surface texture ideal for solar-cell applications

The importance of silicon for almost every element in modern-day electronic devices and computers is due largely to its crystalline atomic structure. Crystalline silicon, however, is much more expensive to produce than its non-crystalline or amorphous form, which has limited the cost reduction achievable in devices such as silicon-based solar cells.


Copyright : iStockphoto.com/ason

Xincai Wang at the A*STAR Singapore Institute of Manufacturing Technology and co-workers[1] have now shown that ultrafast pulses of light can be used to crystallize amorphous silicon and to texture its surface.

The useful electronic properties of silicon stem from the way the atoms are arranged into a regular and repeating lattice. Amorphous silicon, on the other hand, does not display this long-range order: nearby atoms are bonded in the same way but the structure is not homogenous through the whole material. While lacking the extraordinarily useful properties of its crystalline relative, amorphous silicon does have some advantages. Thin films of amorphous silicon can be grown at low temperatures and therefore at much lower cost. In fact, amorphous silicon is used widely in the field of photovoltaics for the conversion of sunlight into electrical power. But modifying the material could improve both electrical efficiency and optical sensitivity.

The researchers used laser radiation to achieve this level of material control. They focused pulses of light just 150 femtoseconds in duration into a spot 30 micrometers in diameter. This spot was then scanned across an 80-nanometer-thick layer of amorphous silicon deposited on a glass substrate.

The first noticeable effect was a change in color: the treated area was darker than the untreated region. Closer inspection using an electron microscope revealed that the laser created ‘nano-spikes’ in the silicon. This texturing is useful for photovoltaic applications because it reduces light reflection from the surface and thereby increases absorption: an effect the researchers confirmed directly.

Raman spectroscopy—a powerful technique for analyzing atomic structure—was then used to compare treated and untreated samples. The Raman spectrum for the untreated region had two peaks characteristic of an amorphous structure. But that of the treated sample displayed a third sharper peak indicative of a crystalline atomic structure. This state change was likely caused by the excitation of electrons at the surface of the silicon by the laser pulses, which weakened the interatomic bonds in a way fundamentally different from simple thermal melting.

“Our process has potential applications in the fabrication of high-efficiency thin-film silicon for solar cells, as well as thin-film transistors and other novel optoelectronic devices,” says Wang.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Journal information

[1] Wang, X.C. et al. Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film. Optics Express 18, 19379–19385 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6285
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>