Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser physics: Getting silicon into order

Short pulses of laser light can crystallize amorphous silicon and create a nanostructured surface texture ideal for solar-cell applications

The importance of silicon for almost every element in modern-day electronic devices and computers is due largely to its crystalline atomic structure. Crystalline silicon, however, is much more expensive to produce than its non-crystalline or amorphous form, which has limited the cost reduction achievable in devices such as silicon-based solar cells.

Copyright :

Xincai Wang at the A*STAR Singapore Institute of Manufacturing Technology and co-workers[1] have now shown that ultrafast pulses of light can be used to crystallize amorphous silicon and to texture its surface.

The useful electronic properties of silicon stem from the way the atoms are arranged into a regular and repeating lattice. Amorphous silicon, on the other hand, does not display this long-range order: nearby atoms are bonded in the same way but the structure is not homogenous through the whole material. While lacking the extraordinarily useful properties of its crystalline relative, amorphous silicon does have some advantages. Thin films of amorphous silicon can be grown at low temperatures and therefore at much lower cost. In fact, amorphous silicon is used widely in the field of photovoltaics for the conversion of sunlight into electrical power. But modifying the material could improve both electrical efficiency and optical sensitivity.

The researchers used laser radiation to achieve this level of material control. They focused pulses of light just 150 femtoseconds in duration into a spot 30 micrometers in diameter. This spot was then scanned across an 80-nanometer-thick layer of amorphous silicon deposited on a glass substrate.

The first noticeable effect was a change in color: the treated area was darker than the untreated region. Closer inspection using an electron microscope revealed that the laser created ‘nano-spikes’ in the silicon. This texturing is useful for photovoltaic applications because it reduces light reflection from the surface and thereby increases absorption: an effect the researchers confirmed directly.

Raman spectroscopy—a powerful technique for analyzing atomic structure—was then used to compare treated and untreated samples. The Raman spectrum for the untreated region had two peaks characteristic of an amorphous structure. But that of the treated sample displayed a third sharper peak indicative of a crystalline atomic structure. This state change was likely caused by the excitation of electrons at the surface of the silicon by the laser pulses, which weakened the interatomic bonds in a way fundamentally different from simple thermal melting.

“Our process has potential applications in the fabrication of high-efficiency thin-film silicon for solar cells, as well as thin-film transistors and other novel optoelectronic devices,” says Wang.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Journal information

[1] Wang, X.C. et al. Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film. Optics Express 18, 19379–19385 (2010).

Lee Swee Heng | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>