Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser flashes without bounds

28.10.2008
Researchers of the Max Born Institute for Nonlinear Optics and Short-Pulse Spectroscopy (MBI) have developed a novel optical fiber that enables transmission of ultrashort light pulses with an unprecedented low degree of distortions.

The researchers transmitted light pulses of 13 fs duration (1 fs = 1 millionth billionth of a second) over one meter distance, with the pulses only stretching to about double of the initial duration. “Currently, no other fiber-based technique is capable of such little distortion”, says Dr. Günter Steinmeyer.

In comparison, using similar fibers of a more conventional make, pulse stretching to more than 50 times the original duration was observed. The novel fibers may be useful in medical applications, e.g., for guiding femtosecond pulses to the patient in a flexible manner. In their advance online section, Nature Photonics reports about this novel type of fiber.

The MBI fiber consists of many glass capillaries and guides the light on a diameter equal to about half the diameter of a human hair. In contrast to conventional hollow fibers, which consist of capillaries of equal diameter, the diameter changes in MBI’s novel fiber (see figure). This can be understood as gluing straws side by side, yielding a tube of straws when the first and the final straw are also glued together. Repeating this procedure with straws of different diameter and fitting the resulting tubes into one another ultimately yields a structure similar to MBI’s fiber. For manufacturing the fiber, the researchers have used 5 such tubes of straws. Referring to the systematic change in capillary diameter, the researchers call such a structure chirped.

Launching ultrashort laser pulses into such a fiber, the chirped structure acts to distribute detrimental resonances over a wide wavelength range, which would otherwise add up at one wavelength if the capillaries had all the same diameter. The fiber was manufactured at Saratov State University in Russia.

The researchers see one particularly interesting medical application of their fiber in photodynamic therapy. For this method, a photosensitizer is accumulated in cancerous cells. Exposing the photosensitizer to light, a substance is formed which causes fatal damage of the tumor cells. Using ultrashort laser pulses rather than continuous light, the selectivity of this therapeutic method could be significantly improved as the photoexcitation could be limited to the immediate vicinity of the focal area, whereas tissue layers immediately above or below the interaction zone would stay unharmed.

So far, however, no fiber was available to guide the required short light pulses to the patient in a flexible way without severe distortions through an endoscope. The chirped fiber structure could also be beneficial for diagnostic applications in biology and medicine, such as in two-photon microscopy, a method that allows for three-dimensional resolution of smallest biological structures at effective suppress.

Christine Vollgraf | alfa
Further information:
http://www.fv-berlin.de
http://www.mbi-berlin.de

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>