Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest ever survey of very distant galaxy clusters completed

02.07.2009
UC Riverside astronomer leads international team studying galaxy formation and evolution in early history of the universe

An international team of researchers led by a UC Riverside astronomer has completed the largest ever survey designed to find very distant clusters of galaxies.

Named the Spitzer Adaptation of the Red-sequence Cluster Survey, "SpARCS" detects galaxy clusters using deep ground-based optical observations from the CTIO 4m and CFHT 3.6m telescopes, combined with Spitzer Space Telescope infrared observations.

In a universe which astronomers believe to be 13.7 billion years old, SpARCS is designed to find clusters, snapped as they appeared long ago in time, when the universe was 6 billion years old or younger.

Clusters of galaxies are rare regions of the universe consisting of hundreds of galaxies containing trillions of stars, plus hot gas and mysterious dark matter. Most of the mass in clusters is actually in the form of invisible dark matter which astronomers are convinced exists because of its influence on the orbits of the visible galaxies.

An example of one of the most massive clusters found in the SpARCS survey is shown in the accompanying image. Seen when the universe was a mere 4.8 billion years old, this is also one of the most distant clusters ever discovered. Many similar-color red cluster galaxies can be seen in the image (the green blobs are stars in our own galaxy, The Milky Way).

"We are looking at massive structures very early in the universe's history," said Gillian Wilson, an associate professor of physics and astronomy who leads the SpARCS project.

The SpARCS survey has discovered about 200 new cluster candidates.

"It is very exciting to have discovered such a large sample of these rare objects," Wilson said. "Although we are catching these clusters at early times, we can tell by their red colors that many of the galaxies we are seeing are already quite old. We will be following up this new sample for years to come, to better understand how clusters and their galaxies form and evolve in the early universe."

A summary of the survey and additional images of newly discovered clusters may be found in two companion papers led by Wilson and Adam Muzzin of Yale University, published in the June 20 issue of The Astrophysical Journal.

The SpARCS team consists of Wilson, who joined UCR in 2007, Ricardo Demarco of UCR; Muzzin of Yale University, Conn.; H.K.C. Yee of the University of Toronto, Canada; Mark Lacy and Jason Surace of the Spitzer Science Center/California Institute of Technology; Henk Hoekstra of Leiden University; Michael Balogh and David Gilbank of the University of Waterloo, Canada; Kris Blindert of the Max Planck Institute for Astronomy, Germany; Subhabrata Majumdar of the Tata Institute of Fundamental Research, India; Jonathan P. Gardner of the Goddard Space Flight Center; Mike Gladders of the University of Chicago; and Carol Lonsdale of the North American ALMA Science Center; Douglas Burke of the Harvard-Smithsonian Center for Astrophysics; Shelly Bursick of the University of Arkansas; Michelle Doherty, Chris Lidman and Piero Rosati of ESO; Erica Ellingson of the University of Colorado; Amalia Hicks of Michigan State University; Alessandro Rettura of Johns Hopkins University; David Shupe of the Herscel Science Center/California Institute of Technology; Paolo Tozzi of the University of Trieste, Italy; Renbin Yan of the University of Toronto; and Tracy Webb of McGill University, Canada.

This work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work is also based on observations obtained with The Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, under contract with the National Science Foundation; observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; and by observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and SECYT (Argentina).

Support for this work was provided, in part, by awards issued by JPL/Caltech, and from Wilson's College of Natural and Agricultural Sciences start-up funds at UCR.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>