Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest collection of anomalous white dwarfs observed in new Hubble images

27.04.2009
Twenty-four unusual stars, 18 of them newly discovered, have been observed in new Hubble telescope images. The stars are white dwarfs, a common type of dead star, but they are odd because they are made of helium rather than the usual carbon and oxygen.

This is the first extensive sequence of helium-core white dwarfs to be observed in a globular cluster, a dense swarm of some of the oldest stars in our galaxy.

A study, accepted for publication in the Astrophysical Journal, suggests that these helium-core white dwarfs have had their lives cut short because of their orbital dance around a partner star.

"Helium-core white dwarfs have only about half the mass of typical white dwarfs, but they are found concentrated in the center of the cluster" said Adrienne Cool, professor of physics and astronomy at San Francisco State University, who co-authored the study with graduate student Rachel R. Strickler. "With such low masses, the helium-core white dwarfs ought to be floating all around the cluster, according to theory. The fact that we find them only in the central regions suggests that they have heavy companions -- partner stars that anchor them to the cluster center."

Being coupled with companions also helps explain the stars' atypical chemical make up. White dwarfs are stars that have reached the end of their lives and have run out of fuel. Most stars burn their fuel leaving behind a dense ball of carbon and oxygen, but these white dwarfs are made of helium. Cool suggests that a star that goes on to become a helium-core white dwarf must have a close companion so that when the star became a red giant and expanded, its outer layers spilled onto the companion. The star never had the chance to reach maturity and burn its helium into carbon and oxygen.

The study focused on star cluster NGC 6397, one of the globular clusters closest to Earth at approximately 7,200 light years away. Six helium-core white dwarfs have been observed before in this cluster. Cool and colleagues discovered the first three in 1998.

"This is the first time that helium-core white dwarf stars have been discovered in partnerships with other white dwarfs in a globular cluster," Cool said. "This large sample allows us to answer questions about the mass and nature of the partner stars, and the prevalence of these kinds of binaries in the globular cluster."

Binary stars play an important role in the evolution of star clusters. Their continual dance around each other provides energy to the cluster that astronomers believe can help prevent black holes from forming. From the data, Cool and her team are able to infer that one to five percent of stars in this globular cluster will end their lives as helium-core white dwarfs with companion stars, a finding that will help improve theoretical models of cluster dynamics. "It may not sound like a lot but it doesn't take many binaries to stir things up," Cool said.

One finding remains a mystery. Despite the Hubble camera's high level of sensitivity, the faintest helium-core white dwarfs appear to be missing.

"It's possible that these helium-core white dwarfs cool so slowly that they haven't had time to get very faint yet," Cool said. Another possibility is that the oldest binaries containing helium-core white dwarfs have been destroyed by interactions with other stars in the cluster.

Adrienne Cool is professor of physics and astronomy at San Francisco State University. Cool co-authored the paper with former SF State student Rachel R. Strickler, now a graduate student at University of California, Santa Cruz. Other collaborators include Jay Anderson, Haldan N. Cohn, Phyllis M. Lugger and Aldo M. Serenelli. The research was supported by NASA and the Space Telescope Science Institute.

"Helium-Core White Dwarfs in the Globular Cluster NGC 6397" will be published in the July 1, 2009 issue of the Astrophysical Journal.

A high-resolution image from Hubble's Advanced Camera for Surveys is available from Elaine Bible, ebible@sfsu.edu, (415) 405-3606.

Elaine Bible | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>