Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest collection of anomalous white dwarfs observed in new Hubble images

27.04.2009
Twenty-four unusual stars, 18 of them newly discovered, have been observed in new Hubble telescope images. The stars are white dwarfs, a common type of dead star, but they are odd because they are made of helium rather than the usual carbon and oxygen.

This is the first extensive sequence of helium-core white dwarfs to be observed in a globular cluster, a dense swarm of some of the oldest stars in our galaxy.

A study, accepted for publication in the Astrophysical Journal, suggests that these helium-core white dwarfs have had their lives cut short because of their orbital dance around a partner star.

"Helium-core white dwarfs have only about half the mass of typical white dwarfs, but they are found concentrated in the center of the cluster" said Adrienne Cool, professor of physics and astronomy at San Francisco State University, who co-authored the study with graduate student Rachel R. Strickler. "With such low masses, the helium-core white dwarfs ought to be floating all around the cluster, according to theory. The fact that we find them only in the central regions suggests that they have heavy companions -- partner stars that anchor them to the cluster center."

Being coupled with companions also helps explain the stars' atypical chemical make up. White dwarfs are stars that have reached the end of their lives and have run out of fuel. Most stars burn their fuel leaving behind a dense ball of carbon and oxygen, but these white dwarfs are made of helium. Cool suggests that a star that goes on to become a helium-core white dwarf must have a close companion so that when the star became a red giant and expanded, its outer layers spilled onto the companion. The star never had the chance to reach maturity and burn its helium into carbon and oxygen.

The study focused on star cluster NGC 6397, one of the globular clusters closest to Earth at approximately 7,200 light years away. Six helium-core white dwarfs have been observed before in this cluster. Cool and colleagues discovered the first three in 1998.

"This is the first time that helium-core white dwarf stars have been discovered in partnerships with other white dwarfs in a globular cluster," Cool said. "This large sample allows us to answer questions about the mass and nature of the partner stars, and the prevalence of these kinds of binaries in the globular cluster."

Binary stars play an important role in the evolution of star clusters. Their continual dance around each other provides energy to the cluster that astronomers believe can help prevent black holes from forming. From the data, Cool and her team are able to infer that one to five percent of stars in this globular cluster will end their lives as helium-core white dwarfs with companion stars, a finding that will help improve theoretical models of cluster dynamics. "It may not sound like a lot but it doesn't take many binaries to stir things up," Cool said.

One finding remains a mystery. Despite the Hubble camera's high level of sensitivity, the faintest helium-core white dwarfs appear to be missing.

"It's possible that these helium-core white dwarfs cool so slowly that they haven't had time to get very faint yet," Cool said. Another possibility is that the oldest binaries containing helium-core white dwarfs have been destroyed by interactions with other stars in the cluster.

Adrienne Cool is professor of physics and astronomy at San Francisco State University. Cool co-authored the paper with former SF State student Rachel R. Strickler, now a graduate student at University of California, Santa Cruz. Other collaborators include Jay Anderson, Haldan N. Cohn, Phyllis M. Lugger and Aldo M. Serenelli. The research was supported by NASA and the Space Telescope Science Institute.

"Helium-Core White Dwarfs in the Globular Cluster NGC 6397" will be published in the July 1, 2009 issue of the Astrophysical Journal.

A high-resolution image from Hubble's Advanced Camera for Surveys is available from Elaine Bible, ebible@sfsu.edu, (415) 405-3606.

Elaine Bible | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>