Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-scale quantum chip validated

01.07.2013
New research finds that prototype quantum optimization chip operates as hoped

A team of scientists at USC has verified that quantum effects are indeed at play in the first commercial quantum optimization processor.

The team demonstrated that the D-Wave processor housed at the USC-Lockheed Martin Quantum Computing Center behaves in a manner that indicates that quantum mechanics plays a functional role in the way it works. The demonstration involved a small subset of the chip's 128 qubits.

This means that the device appears to be operating as a quantum processor – something that scientists had hoped for but have needed extensive testing to verify.

The quantum processor was purchased from Canadian manufacturer D-Wave nearly two years ago by Lockheed Martin and housed at the USC Viterbi Information Sciences Institute (ISI). As the first of its kind, the task for scientists putting it through its paces was to determine whether the quantum computer was operating as hoped.

"Using a specific test problem involving eight qubits we have verified that the D-Wave processor performs optimization calculations (that is, finds lowest energy solutions) using a procedure that is consistent with quantum annealing and is inconsistent with the predictions of classical annealing," said Daniel Lidar, scientific director of the Quantum Computing Center and one of the researchers on the team, who holds joint appointments with the USC Viterbi School of Engineering and the USC Dornsife College of Letters, Arts and Sciences.

Quantum annealing is a method of solving optimization problems using quantum mechanics – at a large enough scale, potentially much faster than a traditional processor can.

Research institutions throughout the world build and use quantum processors, but most only have a few quantum bits, or "qubits."

Qubits have the capability of encoding the two digits of one and zero at the same time – as opposed to traditional bits, which can encode distinctly either a one or a zero. This property, called "superposition," along with the ability of quantum states to "tunnel" through energy barriers, are hoped to play a role in helping future generations of the D-Wave processor to ultimately perform optimization calculations much faster than traditional processors.

With 108 functional qubits, the D-Wave processor at USC inspired hopes for a significant advance in the field of quantum computing when it was installed in October 2011 – provided it worked as a quantum information processor. Quantum processors can fall victim to a phenomenon called "decoherence," which stifles their ability to behave in a quantum fashion.

The USC team's research shows that the chip, in fact, performed largely as hoped, demonstrating the potential for quantum optimization on a larger-than-ever scale.

"Our work seems to show that, from a purely physical point of view, quantum effects play a functional role in information processing in the D-Wave processor," said Sergio Boixo, first author of the research paper, who conducted the research while he was a computer scientist at ISI and research assistant professor at the USC Viterbi School of Engineering.

Boixo and Lidar collaborated with Tameem Albash, postdoctoral research associate in physics at USC Dornsife; Federico M. Spedalieri, computer scientist at ISI; and Nicholas Chancellor, a recent physics graduate at USC Dornsife. Their findings will be published in Nature Communications on June 28.

The news comes just two months after the Quantum Computing Center's original D-Wave processor—known commercially as the "Rainier" chip—was upgraded to a new 512-qubit "Vesuvius" chip. The Quantum Computing Center, which includes a magnetically shielded box that is kept frigid (near absolute zero) to protect the computer against decoherence, was designed to be upgradable to keep up with the latest developments in the field.

The new Vesuvius chip at USC is currently the only one in operation outside of D-Wave. A second such chip, owned by Google and housed at NASA's Ames Research Center in Moffett Field, California, is expected to become operational later this year.

Next, the USC team will take the Vesuvius chip for a test drive, putting it through the same paces as the Rainier chip.

This research was supported by the Lockheed Martin Corporation; U.S. Army Research Office grant number W911NF-12-1-0523; National Science Foundation grant number CHM-1037992, ARO Multidisciplinary University Research Initiative grant W911NF-11-1-026.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>