Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-scale quantum chip validated

01.07.2013
New research finds that prototype quantum optimization chip operates as hoped

A team of scientists at USC has verified that quantum effects are indeed at play in the first commercial quantum optimization processor.

The team demonstrated that the D-Wave processor housed at the USC-Lockheed Martin Quantum Computing Center behaves in a manner that indicates that quantum mechanics plays a functional role in the way it works. The demonstration involved a small subset of the chip's 128 qubits.

This means that the device appears to be operating as a quantum processor – something that scientists had hoped for but have needed extensive testing to verify.

The quantum processor was purchased from Canadian manufacturer D-Wave nearly two years ago by Lockheed Martin and housed at the USC Viterbi Information Sciences Institute (ISI). As the first of its kind, the task for scientists putting it through its paces was to determine whether the quantum computer was operating as hoped.

"Using a specific test problem involving eight qubits we have verified that the D-Wave processor performs optimization calculations (that is, finds lowest energy solutions) using a procedure that is consistent with quantum annealing and is inconsistent with the predictions of classical annealing," said Daniel Lidar, scientific director of the Quantum Computing Center and one of the researchers on the team, who holds joint appointments with the USC Viterbi School of Engineering and the USC Dornsife College of Letters, Arts and Sciences.

Quantum annealing is a method of solving optimization problems using quantum mechanics – at a large enough scale, potentially much faster than a traditional processor can.

Research institutions throughout the world build and use quantum processors, but most only have a few quantum bits, or "qubits."

Qubits have the capability of encoding the two digits of one and zero at the same time – as opposed to traditional bits, which can encode distinctly either a one or a zero. This property, called "superposition," along with the ability of quantum states to "tunnel" through energy barriers, are hoped to play a role in helping future generations of the D-Wave processor to ultimately perform optimization calculations much faster than traditional processors.

With 108 functional qubits, the D-Wave processor at USC inspired hopes for a significant advance in the field of quantum computing when it was installed in October 2011 – provided it worked as a quantum information processor. Quantum processors can fall victim to a phenomenon called "decoherence," which stifles their ability to behave in a quantum fashion.

The USC team's research shows that the chip, in fact, performed largely as hoped, demonstrating the potential for quantum optimization on a larger-than-ever scale.

"Our work seems to show that, from a purely physical point of view, quantum effects play a functional role in information processing in the D-Wave processor," said Sergio Boixo, first author of the research paper, who conducted the research while he was a computer scientist at ISI and research assistant professor at the USC Viterbi School of Engineering.

Boixo and Lidar collaborated with Tameem Albash, postdoctoral research associate in physics at USC Dornsife; Federico M. Spedalieri, computer scientist at ISI; and Nicholas Chancellor, a recent physics graduate at USC Dornsife. Their findings will be published in Nature Communications on June 28.

The news comes just two months after the Quantum Computing Center's original D-Wave processor—known commercially as the "Rainier" chip—was upgraded to a new 512-qubit "Vesuvius" chip. The Quantum Computing Center, which includes a magnetically shielded box that is kept frigid (near absolute zero) to protect the computer against decoherence, was designed to be upgradable to keep up with the latest developments in the field.

The new Vesuvius chip at USC is currently the only one in operation outside of D-Wave. A second such chip, owned by Google and housed at NASA's Ames Research Center in Moffett Field, California, is expected to become operational later this year.

Next, the USC team will take the Vesuvius chip for a test drive, putting it through the same paces as the Rainier chip.

This research was supported by the Lockheed Martin Corporation; U.S. Army Research Office grant number W911NF-12-1-0523; National Science Foundation grant number CHM-1037992, ARO Multidisciplinary University Research Initiative grant W911NF-11-1-026.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>