Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Large-Scale, Physics-Based Space Weather Model Transitions Into Operation

28.01.2011
Provides forecasters with one-to-four-day advance warning of 'solar storms'

The first large-scale, physics-based space weather prediction model is transitioning from research into operation.


A coronal mass ejection (CME) in a model; the CME is the gray cloud toward the lower right. Credit: Dusan Odstrcil, George Mason University

Scientists affiliated with the National Science Foundation (NSF) Center for Integrated Space Weather Modeling (CISM) and the National Weather Service reported the news today at the annual American Meteorological Society (AMS) meeting in Seattle, Wash.

The model will provide forecasters with a one-to-four day advance warning of high speed streams of solar plasma and Earth-directed coronal mass ejections (CMEs).

These streams from the Sun may severely disrupt or damage space- and ground-based communications systems, and pose hazards to satellite operations.

CISM is an NSF Science and Technology Center (STC) made up of 11 member institutions. Established in 2002, CISM researchers address the emerging system-science of Sun-to-Earth space weather.

The research-to-operations transition has been enabled by an unprecedented partnership between the Boston University-led CISM and the National Oceanic and Atmospheric Administration (NOAA)'s Space Weather Prediction Center.

"It's very exciting to pioneer a path from research to operations in space weather," says scientist Jeffrey Hughes of Boston University, CISM's director. "The science is having a real impact on the practical problem of predicting when 'solar storms' will affect us here on Earth."

The development comes in response to the growing critical need to protect the global communications infrastructure and other sensitive technologies from severe space weather disruptions.

This transition culminates several years of close cooperation between CISM and its partner organizations to integrate, improve and validate a model for operational forecast use.

"This milestone represents important scientific progress, and underscores the effectiveness of NSF's Science and Technology Centers in applying research results to real-world problems," says Robert Robinson of NSF's Division of Atmospheric and Geospace Sciences, which funds CISM.

CISM team members worked on-site with scientists and forecasters at NOAA's Space Weather Prediction Center to improve models and visualizations.

Having key team members co-located during this critical phase of development enabled an ongoing discussion between forecasters and scientists that enhanced the development of the model, says Hughes, and ultimately led to NOAA's decision to bring it into operation as the first large-scale physics-based space weather model.

CISM's research and education activities center on developing and validating physics-based numerical simulation models that describe the space environment from the Sun to the Earth.

The models have important applications in understanding the complex space environment, developing space weather specifications and forecasts, and designing advanced tools for teaching, Hughes says.

CISM partners include the U.S. Air Force Research Laboratory, NASA's Community Coordinated Modeling Center, and the NOAA Space Weather Prediction Center.

The lead model developers for the work are CISM team members Dusan Odstrcil of George Mason University and Nick Arge of the Air Force Research Lab.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Related Websites
NSF Center for Integrated Space Weather Modeling: http://www.bu.edu/cism
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=118395&org=NSF&from=news

More articles from Physics and Astronomy:

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

nachricht Creative use of noise brings bio-inspired electronic improvement
26.09.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>