Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landsat Looks to the Moon

14.07.2014

Every full moon, Landsat 8 turns its back on Earth. As the satellite’s orbit takes it to the nighttime side of the planet, Landsat 8 pivots to point at the moon. It scans the distant lunar surface multiple times, then flips back around to continue its task of collecting land-cover information of the sunny side of Earth below.

These monthly lunar scans are key to ensuring the land-imaging instrument aboard Landsat 8 is detecting light consistently. For this, engineers need a consistent source of light to measure.


Every full moon, Landsat 8 turns its back on Earth. As the satellite's orbit takes it to the nighttime side of the planet, Landsat 8 pivots to point at the moon. It scans the distant lunar surface multiple times, then flips back around to continue its task of collecting information on Earth.

Image Credit: NASA's Goddard Space Flight Center

And while there are some spots on Earth – like the Sahara Desert or other arid sites – that reflect a relatively stable amount of light, nothing on our planet beats the moon, which lacks an atmosphere and has an unchanging surface, barring the odd meteorite.

We really wanted something we could trust for Landsat 8,” said Brian Markham, leader of the calibration team for Landsat 8, which was built and launched by NASA and is now operated by the U.S. Geological Survey.

“We do have Earth sites we look at for calibration. But the precision with which you can track things by using the Earth, because of the atmosphere, is not as good as the moon.”

Landsat 8’s Operational Land Imager, or OLI, collects information on the visible, near infrared and shortwave-infrared light reflecting off Earth’s surface. Each wavelength of light provides information about the ground surface below.

OLI has 14 detector modules, each of which contains hundreds of individual detectors that record different spectral bands. The calibration team at Goddard and the U.S. Geological Survey’s EROS facility in South Dakota is tasked with making sure each of those detectors register light consistently over time.

Aboard the spacecraft, lamps provide light to calibrate OLl’s detectors, but the lamps aren’t perfect.  On the Landsat 7 satellite, the lamps started to fade before the detectors did.  Another option, solar diffusers, which use indirect sunlight, can darken as well.

“Everything else we’ve tried to use to monitor the stability of our instruments has often not been as good as the instruments themselves,” Markham said. But the moon is a steady, not-too-bright light in the sky. "As long as we know what its illumination conditions are, we can trend our instrument performance to it because we trust its stability.”

So Landsat 8 planners designed this latest satellite to image the moon as a baseline calibration. If, during these lunar tests, the OLI detectors indicate that the moon is getting slightly duller or brighter, then the Goddard scientists will know the instrument –not the moon – is off. With that data, they can adjust the algorithms that calculate land cover information during Landsat’s regular Earth-observation orbits.

It’s a fairly complicated operation to scan the moon each month, said Susan Good, a flight dynamics engineer at Goddard who works with Landsat 8.

“There are 14 detector modules,” Good said, “each of these has to scan the same path along the moon, so that you collect exactly the same data on each sensor.”

The flight dynamics software determines precisely where the spacecraft will need to point during a lunar calibration. The timing is set for just after the moon is completely full. Then, as Landsat 8 passes over Antarctica and heads north in Earth’s shadow, the spacecraft maneuvers to the precise location to start the first scan across the lunar surface.

It executes tiny and precise scans to take seven or eight passes across the moon – each one angled so that a different detector is centered on the moon. This takes about 18 minutes, by which time the spacecraft has almost reached the Arctic. So it maneuvers back to point at Earth, and complete its day-lit imaging. Then, Landsat 8 pivots to face the moon again, completing additional passes to test the remaining detectors. After two orbits, the lunar calibration is complete.

In Landsat 8’s first year, the lunar calibration tests show that the detectors are stable, Markham said, within a fraction of a percent. If the lunar calibrations and other tests show the detectors are off, the scientists can adjust the calculations that turn the raw Landsat data into information on land cover brightness, maintaining their accuracy.

Since the regular checks on Landsat 8’s performance, Good jokes that she will never look at the full moon the same. “I think oh, we’re having a lunar calibration,” she said. “I always know what Landsat' 8’s doing when the moon is full.” 

Kate Ramsayer
NASA Goddard Space Flight Center

Kate Ramsayer | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/landsat-looks-to-the-moon/

Further reports about: Antarctica Earth Flight Geological Moon NASA Sahara atmosphere meteorite satellite wavelength

More articles from Physics and Astronomy:

nachricht Spiral arms: not just in galaxies
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>