Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landsat Looks to the Moon

14.07.2014

Every full moon, Landsat 8 turns its back on Earth. As the satellite’s orbit takes it to the nighttime side of the planet, Landsat 8 pivots to point at the moon. It scans the distant lunar surface multiple times, then flips back around to continue its task of collecting land-cover information of the sunny side of Earth below.

These monthly lunar scans are key to ensuring the land-imaging instrument aboard Landsat 8 is detecting light consistently. For this, engineers need a consistent source of light to measure.


Every full moon, Landsat 8 turns its back on Earth. As the satellite's orbit takes it to the nighttime side of the planet, Landsat 8 pivots to point at the moon. It scans the distant lunar surface multiple times, then flips back around to continue its task of collecting information on Earth.

Image Credit: NASA's Goddard Space Flight Center

And while there are some spots on Earth – like the Sahara Desert or other arid sites – that reflect a relatively stable amount of light, nothing on our planet beats the moon, which lacks an atmosphere and has an unchanging surface, barring the odd meteorite.

We really wanted something we could trust for Landsat 8,” said Brian Markham, leader of the calibration team for Landsat 8, which was built and launched by NASA and is now operated by the U.S. Geological Survey.

“We do have Earth sites we look at for calibration. But the precision with which you can track things by using the Earth, because of the atmosphere, is not as good as the moon.”

Landsat 8’s Operational Land Imager, or OLI, collects information on the visible, near infrared and shortwave-infrared light reflecting off Earth’s surface. Each wavelength of light provides information about the ground surface below.

OLI has 14 detector modules, each of which contains hundreds of individual detectors that record different spectral bands. The calibration team at Goddard and the U.S. Geological Survey’s EROS facility in South Dakota is tasked with making sure each of those detectors register light consistently over time.

Aboard the spacecraft, lamps provide light to calibrate OLl’s detectors, but the lamps aren’t perfect.  On the Landsat 7 satellite, the lamps started to fade before the detectors did.  Another option, solar diffusers, which use indirect sunlight, can darken as well.

“Everything else we’ve tried to use to monitor the stability of our instruments has often not been as good as the instruments themselves,” Markham said. But the moon is a steady, not-too-bright light in the sky. "As long as we know what its illumination conditions are, we can trend our instrument performance to it because we trust its stability.”

So Landsat 8 planners designed this latest satellite to image the moon as a baseline calibration. If, during these lunar tests, the OLI detectors indicate that the moon is getting slightly duller or brighter, then the Goddard scientists will know the instrument –not the moon – is off. With that data, they can adjust the algorithms that calculate land cover information during Landsat’s regular Earth-observation orbits.

It’s a fairly complicated operation to scan the moon each month, said Susan Good, a flight dynamics engineer at Goddard who works with Landsat 8.

“There are 14 detector modules,” Good said, “each of these has to scan the same path along the moon, so that you collect exactly the same data on each sensor.”

The flight dynamics software determines precisely where the spacecraft will need to point during a lunar calibration. The timing is set for just after the moon is completely full. Then, as Landsat 8 passes over Antarctica and heads north in Earth’s shadow, the spacecraft maneuvers to the precise location to start the first scan across the lunar surface.

It executes tiny and precise scans to take seven or eight passes across the moon – each one angled so that a different detector is centered on the moon. This takes about 18 minutes, by which time the spacecraft has almost reached the Arctic. So it maneuvers back to point at Earth, and complete its day-lit imaging. Then, Landsat 8 pivots to face the moon again, completing additional passes to test the remaining detectors. After two orbits, the lunar calibration is complete.

In Landsat 8’s first year, the lunar calibration tests show that the detectors are stable, Markham said, within a fraction of a percent. If the lunar calibrations and other tests show the detectors are off, the scientists can adjust the calculations that turn the raw Landsat data into information on land cover brightness, maintaining their accuracy.

Since the regular checks on Landsat 8’s performance, Good jokes that she will never look at the full moon the same. “I think oh, we’re having a lunar calibration,” she said. “I always know what Landsat' 8’s doing when the moon is full.” 

Kate Ramsayer
NASA Goddard Space Flight Center

Kate Ramsayer | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/landsat-looks-to-the-moon/

Further reports about: Antarctica Earth Flight Geological Moon NASA Sahara atmosphere meteorite satellite wavelength

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>