Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laboratory models suggest that stretching forces shaped Jupiter Moon's surface


Processes that shaped the ridges and troughs on the surface of Jupiter's icy moon Ganymede are likely similar to tectonic processes seen on Earth, according to a team of researchers led by Southwest Research Institute (SwRI). To arrive at this conclusion, the team subjected physical models made of clay to stretching forces that simulate tectonic action. The results were published in Geophysical Research Letters.

Physical analog models simulate geologic structures in laboratory settings so that the developmental sequence of various phenomena can be studied as they occur.

Left Image: Courtesy of Southwest Research Institute;

Right Image: Courtesy of NASA/JPL SSI image s0552443639

An image of a tabletop-size analog model (left) shows details of fault systems created by extension that visually match an image by spacecraft Galileo of faulted terrain on Ganymede (right).

The team – including researchers from SwRI, Wheaton College, NASA's Jet Propulsion Laboratory and NuStar Energy LP – created complex patterns of faults in their models, similar to the ridge and trough features seen in some regions of Ganymede. The models consisted of a “wet clay cake” material possessing brittle characteristics to simulate how the icy moon’s lithosphere, the outermost solid shell, responds to stresses by cracking.

The laboratory models suggest that characteristic patterns of ridges and troughs, called grooved terrain on Ganymede, result from its surface being stretched. “The physical models showed a marked similarity to the surface features observed on Ganymede,” said co-author Dr. Danielle Wyrick, a senior research scientist in the SwRI Space Science and Engineering Division.

“From the experiments, it appears that a process in which the crust breaks into separate blocks by large amounts of extension is the primary mechanism for creating these distinct features.”

“Physical analog modeling allows us to simulate the formation of complex three-dimensional geologic structures on Ganymede, without actually going to Ganymede,” said co-author Dr. David Ferrill, director of the Earth, Material and Planetary Sciences Department in the SwRI Geosciences and Engineering Division.

“These scaled models are able to reproduce the fine geometric details of geologic processes, such as faulting, and to develop and test hypotheses for landscape evolution on planetary bodies.”

SwRI researchers previously have used physical analog models to examine the process by which pit crater chains — a series of linear pits, or depressions — develop on Mars, and how magma in the Martian subsurface deforms the surface of the Red Planet.

NASA’s Outer Planets Research Program supported this work. The paper, “Physical models of grooved terrain tectonics on Ganymede,” by D.W. Sims, D.Y. Wyrick, D.A. Ferrill, A.P. Morris, G.C. Collins, R.T. Pappalardo and S.L. Colton, was published by Geophysical Research Letters, 16 June 2014, Volume 41, Issue 11, pages 3774–3778 , (doi 10.1002/2014GL060359).

Editors: An image is available at

For more information, contact Joe Fohn, (210) 522-4630, or Maria Martinez Stothoff, (210) 522-3305, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510

Maria Martinez Stothoff | Eurek Alert!
Further information:

Further reports about: Division Engineering Ganymede Jupiter Laboratory Mars Red Planet SwRI characteristic structures

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>