Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Laboratory Experiment to Accurately Model Stellar Jets Explains Mysterious "Knots"

11.02.2009
Some of the most breathtaking objects in the cosmos are the jets of matter streaming out of stars, but astrophysicists have long been at a loss to explain how these jets achieve their varied shapes. Now, laboratory research detailed in the current issue of Astrophysical Review Letters shows how magnetic forces shape these stellar jets.

"The predominant theory says that jets are essentially fire hoses that shoot out matter in a steady stream, and the stream breaks up as it collides with gas and dust in space—but that doesn't appear to be so after all," says Adam Frank, professor of astrophysics at the University of Rochester, and co-author of the paper.

"These experiments are part of an unusal international collaboration of plasma physicists, astronomers and computational scientists. It's a whole new way of doing astrophysics. The experiments strongly suggest that the jets are fired out more like bullets or buckshot. They don't break into pieces—they are formed in pieces."

Frank says the experiment, conducted by Professor Sergey Lebedev's team in the Department of Physics at Imperial College London (www.imperial.ac.uk), may be the best astrophysical experiment that's ever been done. Replicating the physics of a star in a laboratory is exceptionally difficult, he says, but the Imperial experiment matches the known physics of stellar jets surprisingly well. "Lebedev's group at Imperial has absolutely pioneered the use of these experiments for studying astrophysical phenomena. The collaboration between Imperial and Rochester has been going on for almost 5 years and now it is bearing some extraordinary fruit."

At Imperial, Lebedev sent a high-powered pulse of energy into an aluminum disk. In less than a few billions of a second, the aluminum began to evaporate, creating a cloud of plasma very similar to the plasma cloud surrounding a young star. Where the energy flowed into the center of the disk, the aluminum eroded completely, creating a hole through which a magnetic field from beneath the disk could penetrate."

The field initially pushes aside the plasma, forming a bubble within it, says Frank, who carried out the astrophysical analysis of the experiment. As the field penetrates further and the bubble grows, however, the magnetic fields begin to warp and twist, creating a knot in the jet. Almost immediately, a new magnetic bubble forms inside the base of the first as the first is propelled away, and the process repeats.

Frank likens the magnetic fields' affect on the jet to a rubber band tightly wrapped around a tube of toothpaste—the field holds the jet together, but it also pinches the jet into bulges as it does.

"We can see these beautiful jets in space, but we have no way to see what the magnetic fields look like," says Frank. "I can't go out and stick probes in a star, but here we can get some idea—and it looks like the field is a weird, tangled mess."

Frank says other aspects of the experiment, such as the way in which the jets radiatively cool the plasma in the same way jets radiatively cool their parent stars, make the series of experiments an important tool for studying stellar jets. With this new model, he says, astrophysicists do not have to assume that the knotted jets they see in nature mean some unknown phenomenon interrupted the jets' flow of material.

Now, says Frank, some experiments that were once far beyond astrophysicists' reach have been, literally, brought down to Earth.

About the University of Rochester
The University of Rochester is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College of Arts, Sciences, and Engineering is complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>