Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New knowledge about early galaxies

03.07.2013
The early galaxies of the universe were very different from today's galaxies.
Using new detailed studies carried out with the ESO Very Large Telescope and the Hubble Space Telescope, researchers, including members from the Niels Bohr Institute, have studied an early galaxy in unprecedented detail and determined a number of important properties such as size, mass, content of elements and have determined how quickly the galaxy forms new stars. The results are published in the scientific journal, Monthly Notices of the Royal Astronomical Society.

"Galaxies are deeply fascinating objects. The seeds of galaxies are quantum fluctuations in the very early universe and thus, understanding of galaxies links the largest scales in the universe with the smallest. It is only within galaxies that gas can become cold and dense enough to form stars and galaxies are therefore the cradles of starsbirths", explains Johan Fynbo, professor at the Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen.

Early in the universe, galaxies were formed from large clouds of gas and dark matter. Gas is the universe's raw material for the formation of stars. Inside galaxies the gas can cool down from the many thousands of degrees it has outside galaxies. When gas is cooled it becomes very dense. Finally, the gas is so compact that it collapses into a ball of gas where the gravitational compresion heats up the matter, creating a glowing ball of gas – a star is born.

Cycle of stars
In the red-hot interior of massive stars, hydrogen and helium melt together and form the first heavier elements like carbon, nitrogen, oxygen, which go on to form magnesium, silicon and iron. When the entire core has been converted into iron, no more energy can be extracted and the star dies as a supernova explosion. Every time a massive star burns out and dies, it hence flings clouds of gas and newly formed elements out into space, where they form gas clouds that get denser and denser and eventually collapse to form new stars. The early stars contained only a thousandth of the elements found in the Sun today. In this way, each generation of stars becomes richer and richer in heavy elements.
In today's galaxies, we have a lot of stars and less gas. In the early galaxies, there was a lot of gas and fewer stars.

"We want to understand this cosmic evolutionary history better by studying very early galaxies. We want to measure how large they are, what they weigh and how quickly stars and heavy elements are formed," explains Johan Fynbo, who has lead the research together with Jens-Kristian Krogager, PhD student at the Dark Cosmology Centre at the Niels Bohr Institute.

Early potential for planet formation
The research team has studied a galaxy located approx. 11 billion years back in time in great detail. Behind the galaxy is a quasar, which is an active black hole that is brighter than a galaxy. Using the light from the quasar, they found the galaxy using the giant telescopes, VLT in Chile. The large amount of gas in the young galaxy simply absorbed a massive amount of the light from the quasar lying behind it. Here they could 'see' (i.e. via absorption) the outer parts of the galaxy. Furthermore, active star formation causes some of the gas to light up, so it could be observed directly.

With the Hubble Space Telescope they could also see the recently formed stars in the galaxy and they could calculate how many stars there were in relation to the total mass, which is comprised of both stars and gas. They could now see that the relative proportion of heavier elements is the same in the centre of the galaxy as in the outer parts and it shows that the stars that are formed earlier in the centre of the galaxy enrich the stars in the outer parts with heavier elements.

"By combining the observations from both methods – absorption and emission – we have discovered that the stars have an oxygen content equivalent to approx. 1/3 of the Sun's oxygen content. This means that earlier generations of stars in the galaxy had already built up elements that made it possible to form planets like Earth 11 billion years ago," conclude Johan Fynbo and Jens-Kristian Krogager.

The url to the paper: http://dx.doi.org/10.1093/mnras/stt955
For more information contact:
Jens-Kristian Krogager, PhD student, Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen, +45 3532-5983, +45 2875-5983, krogager@dark-cosmology.dk

Johan Fynbo, Professor, Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen, +45 3532-5983, +45 2875-5983, jfynbo@dark-cosmology.dk

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.dark-cosmology.dk

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>