Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

King's College London finds rainbows on nanoscale

20.11.2012
Big impact on solar cells, television screens

Researchers at King's College London discovered how to separate colors and create "rainbows" using nanoscale structures on a metal surface. This may lead to improved solar cells, TV screens and photo detectors.

Credit: Dr. Jean-Sebastien Bouillard, Dr. Ryan McCarron

New research at King's College London may lead to improved solar cells and LED-displays. Researchers from the Biophysics and Nanotechnology Group at King's, led by Professor Anatoly Zayats in the department of Physics have demonstrated in detail how to separate colours and create 'rainbows' using nanoscale structures on a metal surface. The research is published in Nature's Scientific Reports.

More than 150 years ago, the discovery at King's of how to separate and project different colours, paved the way for modern colour televisions and displays. The major challenge for scientists in this discipline nowadays is the manipulation of colour at the nanoscale. This capability will have important implications for imaging and spectroscopy, sensing of chemical and biological agents and may lead to improved solar cells, flat-screen tv's and displays.

Researchers at King's were able to trap light of different colours at different positions of a nanostructured area, using especially designed nanostructures. Depending on the geometry of the nanostructure, a trapped rainbow could be created on a gold film that has the dimension on the order of a few micrometers - about 100 times smaller than the width of a human hair.

Professor Zayats explained: 'Nanostructures of various kinds are being considered for solar cell applications to boost light absorption efficiency. Our results mean that we do not need to keep solar cells illuminated at a fixed angle without compromising the efficiency of light coupling in a wide range of wavelengths. When used in reverse for screens and displays, this will lead to wider viewing angles for all possible colours.'

The big difference to natural rainbows - where red always appears on the outer side and blue on the inner side - is that in the created nanostructures the researchers were able to control where the rainbow colours would appear by controlling the nanostructures' parameters. On top of this, they discovered that it is possible to separate colours on different sides of the nanostructures.

Co-author Dr Jean-Sebastien Bouillard from King's said: 'The effects demonstrated here will be important to provide 'colour' sensitivity in infrared imaging systems for security and product control. It will also enable the construction of microscale spectrometers for sensing applications.'

The ability to couple light to nanostructures with multicolour characteristics will be of major importance for light capturing devices in a huge range of applications, from light sources, displays, photo detectors and solar cells to sensing and light manipulation in optical circuits for tele- and data communications.

NOTES TO EDS

Paper title: 'Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp' (pdf of final paper available upon request)
Nature's Scientific Reports
http://www.nature.com/scientificreports, DOI: 10.1038/srep00829

Marianne Slegers | EurekAlert!
Further information:
http://www.kcl.ac.uk

More articles from Physics and Astronomy:

nachricht How do neutron bells toll on the skin of the atomic nucleus?
18.09.2014 | Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN)

nachricht KTH enters the petaflop era with new supercomputer
18.09.2014 | KTH The Royal Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

"Start-ups and spin-offs funding – Public and private policies", 14th October 2014

12.09.2014 | Event News

BALTIC 2014: Baltic Sea Geologists meet in Warnemünde

03.09.2014 | Event News

IT security in the digital society

27.08.2014 | Event News

 
Latest News

KTH enters the petaflop era with new supercomputer

18.09.2014 | Physics and Astronomy

Researchers convert carbon dioxide into a valuable resource

18.09.2014 | Process Engineering

How do neutron bells toll on the skin of the atomic nucleus?

18.09.2014 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>