Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two kinds of Webb telescope mirrors arrive at NASA Goddard

14.04.2011
It takes two unique types of mirrors working together to see farther back in time and space than ever before, and engineers at NASA's Goddard Space Flight Center have just received one of each type.

Primary and Secondary Mirror Engineering Design Units (EDUs) have recently arrived at NASA's Goddard Space Flight Center in Greenbelt, Md. from Northrop Grumman Aerospace Systems in Redondo Beach, Calif. and are undergoing examination and testing. When used on the James Webb Space Telescope those two types of mirrors will allow scientists to make those observations.

"The Primary mirror EDU will be used next year to check out optical test equipment developed by Goddard and slated to be used to test the full Flight Primary mirror," said Lee Feinberg, the Optical Telescope Element Manager for the Webb telescope at NASA Goddard. "Following that, the primary and secondary EDU's will actually be assembled onto the Pathfinder telescope. The Pathfinder telescope includes two primary mirror segments (one being the Primary EDU) and the Secondary EDU and allows us to check out all of the assembly and test procedures (that occur both at Goddard and testing at Johnson Space Center, Houston, Texas) well in advance of the flight telescope assembly and test."

The primary mirror is actually composed of 18 smaller hexagonal mirrors that are assembled together into what appears to be a giant hexagon that sits atop the Webb telescope's sunshield. Webb Telescope's scientists and engineers determined that a primary mirror measuring 6.5 meters (21 feet 4 inches) across is what was needed to measure the light from these distant galaxies. Each of these mirrors is constructed from beryllium, a light and strong metal. Each of the 18 mirror segments weighs approximately 20 kilograms (46 pounds).

Why are the mirrors hexagonal shaped? Because a hexagon allows a segmented mirror to fit together without gaps. When Webb's primary mirror is focused on a distant star for example, that image will appear in all 18 mirror segments. To focus on the star and get one image, the mirror segments can then be tilted to align the 18 separate images into a single image.

Although there are 18 segments, there are three different optical prescriptions for the 18 segments: six segments of each prescription. The segment received is the first of the "A" prescription segments for which a total of 7 will be made - 6 flight and 1 spare. A prescription is similar to an eyeglass prescription and specifies a unique mirror curvature. Like eyeglasses, mirrors with the same prescription are interchangeable.

The primary mirror EDU that arrived at Goddard is also a flight spare. That means it can be used on the actual telescope. In fact, it could even be put on the telescope now if needed.

The primary mirror segment has already been cleaned and coated. Ball Aerospace & Technologies cleaned the mirror segment and Quantum Coating, Inc., in Moorestown, N.J., coated it. Ball Aerospace then took the mirror segment back, reassembled it with mounts and actuators and conducted final vibration testing.

Afterward, the mirror segment went back to the X-ray and Cryogenic Facility (XRCF) in Huntsville, Ala., where Ball performed final cryogenic acceptance testing on the segment before it came to NASA Goddard.

The secondary mirror on the Webb telescope will direct the light from the primary mirror to where it can be collected by the Webb's instruments. The secondary mirror is connected to "arms" that position it in front of the 18 primary mirror segments. It will focus all of the light from the 18 primary mirrors.

The secondary EDU at Goddard is not coated but can be, so it can be a flight spare once coated.

Eventually, the final flight mirrors will all come to NASA Goddard and be assembled on the telescope and the instrument module. Then, as a complete unit it will undergo acoustic and vibration testing at Goddard.

The James Webb Space Telescope is the world's next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, Webb will observe the most distant objects in the universe, provide images of the very first galaxies ever formed and see unexplored planets around distant stars. The Webb Telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>