Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kiel University is going to fly behind the moon

14.04.2016

The tension was immense, but it was released this week, when the announcement came that one of Kiel University's instruments would be on board the next Chinese mission to the moon, Chang'E 4.

"Kiel University is going to fly behind the moon!" said Jia Yu excitedly, a doctoral candidate at the Institute of Experimental and Applied Physics. Born in China, he will obtain his doctoral degree at Kiel University in a few months and then take over the project "Lunar Lander Neutron Dosimetry“ (LND).


NASA’s Earth Polychromatic Imaging Camera (EPIC) on board the NOAA’s Deep Space Climate Observatory (DSCOVR) satellite took this unique picture of the back of the moon in July 2015.

Credit: NASA / DSCOVR by Earth Polychromatic Imaging Camera (EPIC)

"We weren't sure if we would be able to implement a project like this one from Kiel with our colleagues at the National Space Science Center in Beijing", Yu reported. For this reason all those involved are even happier that it worked out.

Now that the decision has been made, the team, led by Professor Robert Wimmer-Schweingruber, faces a major task. Within one year, the physicists in Kiel want to develop, build and mount the new LND experiment on the spaceship. In the final quarter of 2018, this should then fly to the moon. "A real challenge", said Lars Seimetz and Björn Schuster, the responsible mechanical and electronics engineers, "but really exciting. We can improve our designs that we developed for previous space missions."

Radiation measuring instruments from Kiel have been used before in space missions by the American and European space agencies NASA and ESA: On board the Mars Rover "Curiosity", the team is currently collecting data on galactic and solar particle radiation and using it to research the potential radiation exposure for manned missions to Mars.

The Kiel-based researchers provided four sensors for the "Solar Orbiter" space probe, which will also depart for space at the end of 2018 to research the sun. These sensors are to measure the spread and acceleration of solar particles. Successful experiments such as this one enabled the physicists to collect valuable experience which will be very useful when developing the LND.

The fourth Chinese mission to the moon aims to land on the side of the moon facing away from the Earth. The scientific data from the Lander and the Rover, which will then accommodate further experiments by international research teams, should then be sent to Earth via a relay satellite.

The Kiel-based experiment will measure radiation on the moon in preparation for future manned missions to the moon and - if all goes well - also measure the water content of the ground beneath the landing unit.

"To do this, we will be using a new technology developed for space to provide evidence of so-called thermal neutrons", said Wimmer-Schweingruber. The physicist is convinced that everything will be ready on time, because the group is just right: "It is incredible to be working with such a great team!" This mission also continues a long-term cooperation with the Institute of Aerospace Medicine at the German Aerospace Center (DLR).


Contact:
Prof. Robert Wimmer-Schweingruber
Institute of Experimental and Applied Physics
E-Mail: wimmer@physik.uni-kiel.de
Tel.: +49 (0)173/9513332

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-106-mondmission&l...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>