Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kiel University is going to fly behind the moon

14.04.2016

The tension was immense, but it was released this week, when the announcement came that one of Kiel University's instruments would be on board the next Chinese mission to the moon, Chang'E 4.

"Kiel University is going to fly behind the moon!" said Jia Yu excitedly, a doctoral candidate at the Institute of Experimental and Applied Physics. Born in China, he will obtain his doctoral degree at Kiel University in a few months and then take over the project "Lunar Lander Neutron Dosimetry“ (LND).


NASA’s Earth Polychromatic Imaging Camera (EPIC) on board the NOAA’s Deep Space Climate Observatory (DSCOVR) satellite took this unique picture of the back of the moon in July 2015.

Credit: NASA / DSCOVR by Earth Polychromatic Imaging Camera (EPIC)

"We weren't sure if we would be able to implement a project like this one from Kiel with our colleagues at the National Space Science Center in Beijing", Yu reported. For this reason all those involved are even happier that it worked out.

Now that the decision has been made, the team, led by Professor Robert Wimmer-Schweingruber, faces a major task. Within one year, the physicists in Kiel want to develop, build and mount the new LND experiment on the spaceship. In the final quarter of 2018, this should then fly to the moon. "A real challenge", said Lars Seimetz and Björn Schuster, the responsible mechanical and electronics engineers, "but really exciting. We can improve our designs that we developed for previous space missions."

Radiation measuring instruments from Kiel have been used before in space missions by the American and European space agencies NASA and ESA: On board the Mars Rover "Curiosity", the team is currently collecting data on galactic and solar particle radiation and using it to research the potential radiation exposure for manned missions to Mars.

The Kiel-based researchers provided four sensors for the "Solar Orbiter" space probe, which will also depart for space at the end of 2018 to research the sun. These sensors are to measure the spread and acceleration of solar particles. Successful experiments such as this one enabled the physicists to collect valuable experience which will be very useful when developing the LND.

The fourth Chinese mission to the moon aims to land on the side of the moon facing away from the Earth. The scientific data from the Lander and the Rover, which will then accommodate further experiments by international research teams, should then be sent to Earth via a relay satellite.

The Kiel-based experiment will measure radiation on the moon in preparation for future manned missions to the moon and - if all goes well - also measure the water content of the ground beneath the landing unit.

"To do this, we will be using a new technology developed for space to provide evidence of so-called thermal neutrons", said Wimmer-Schweingruber. The physicist is convinced that everything will be ready on time, because the group is just right: "It is incredible to be working with such a great team!" This mission also continues a long-term cooperation with the Institute of Aerospace Medicine at the German Aerospace Center (DLR).


Contact:
Prof. Robert Wimmer-Schweingruber
Institute of Experimental and Applied Physics
E-Mail: wimmer@physik.uni-kiel.de
Tel.: +49 (0)173/9513332

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-106-mondmission&l...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>