Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Kick-off for a new era of precision astronomy


The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared wavelengths.

The MICADO instrument will be developed and built by a consortium of European institutes in collaboration with ESO. MICADO will be the first dedicated imaging camera for the giant telescope E-ELT.

Credit: ESO/MICADO consortium

MICADO is the Multi-AO Imaging Camera for Deep Observations, which has been designed to work on the 39-m European Extremely Large Telescope (E-ELT). This revolutionary telescope will be the largest optical/near-infrared telescope in the world, gathering about 15 times more light than the largest optical telescopes existing today.

The MICADO camera will provide the capability for diffraction-limited imaging at near-infrared wavelengths, taking the power of adaptive optics to the next level. To correct for distortions due to the Earth’s atmosphere, MICADO is optimized to make use of adaptive optics (AO): a simple single conjugate AO mode (SCAO) for correction of individual targets and a powerful multi-conjugate AO mode provided by the MAORY (Multi-conjugate Adaptive Optics RelaY) instrument to obtain sharp images over a wide-field of view.

The key capabilities of MICADO are matched to the unique features of the new telescope, and will lead to dramatic discoveries of new or unexplored astrophysical phenomena. To name but a few: Its high sensitivity will allow it to detect the faintest stars and furthest galaxies. Its unprecedented spatial resolution will reveal structures in nebulae and galaxies in detail far beyond what is currently possible.

For instance, by resolving stellar populations in distant galaxies their star formation history and evolution can be studied. And with the superb astrometric precision achieved by MICADO, many astronomical objects will no longer be static – they will become dynamic. Measuring the tiny movements of stars will reveal the presence of otherwise hidden black holes in star clusters, and tracking the motions of star clusters will lead to new insights about how our Milky Way formed.

In addition, MICADO includes a special mode that will allow it to directly observe and characterize extrasolar planets, and another that enables it to take spectra of compact objects.

“It’s an incredibly exciting prospect, the measurements we’ll be able to make with our camera and this giant future telescope,” says Ric Davies, the Principal Investigator at MPE. “But this is also a very challenging project, and I am glad to have such a capable and enthusiastic team.”

The MICADO instrument will be developed and built by a consortium of European institutes in collaboration with ESO. All partners have a strong tradition of working together to design and build world-class optical and infrared instrumentation. The project is expected to last nearly 10 years from the beginning of the current design phase to the end of commissioning, with the first light of both the E-ELT and MICADO planned for 2024.

As the lead institute, MPE is responsible for the overall project management and system engineering, and represents the consortium towards ESO. In addition, the team at MPE takes the lead in the developing and constructing the MICADO cryostat and the cold optics.

The main contributions of MPIA to MICADO are the high-precision Instrument-De-Rotator and the Calibration Units. The De-Rotator compensates the rotation of the field of view caused by the rotation of the Earth during observations. The Calibration Units will support the detector calibration of both the imaging camera and the spectrograph. A particular challenge is the long-time calibration of astrometric imaging errors unavoidable for a wide- field instrument like MICADO.

"The combination of the never before achieved resolution and light collecting power of the 39m-E-ELT will allow us to unravel for the first time the transition area between the low-mass stellar black holes and their supermassive counterparts in the centers of galaxies," says Jörg-Uwe Pott from MPIA, Instrument Scientist for the entire MICADO project, and adds: "We will win important insights into the innermost processes of active galaxies and the star- and galaxy formation in the early universe."

ESO supports the development of the MICADO instrument as an associate consortium member. It is responsible for two key areas: development and procurement of the science detector systems and the design of the adaptive optics wave front sensing and guide camera system with its associated real-time computer. Both activities are carried by ESO for all E-ELT instrumentation projects. In addition ESO is responsible for and manages the crucial interface between the MICADO science instrument and the multi-conjugate adaptive optics instrument MAORY.


The MICADO consortium comprises:

MPE: Max-Planck-Institut für extraterrestrische Physik (Germany); PI: Ric Davies

MPIA: Max-Planck-Institut für Astronomie (Germany); Co-PI: Jörg-Uwe Pott

USM: Universitäts-Sternwarte München(Germany); Co-PI: Florian Lang-Bardl

IAG: Institute for Astrophysics of the Georg-August-Universität Göttingen (Germany); Co-PI: Harald Nicklas

NOVA: Netherlands Research School for Astronomy (vertreten durch University of Groningen, University of Leiden, NOVA optical/infrared instrumentation group based at ASTRON in Dwingeloo) (Niederlande); Co-PI: Eline Tolstoy (at Univ. Groningen)

INAF-OAPD: National Institute for Astrophysics at the Observatory of Padova; Co-PI: Roberto Ragazzoni (at OAPD)

CNRS/INSU: Centre National de la Recherche Scientifique/Institut National des Sciences de l’Univers (für MICADO vertreten durch LESIA, GEPI und IPAG) (Frankreich); Co-PI: Yann Clenet (at LESIA)

A*: Eine österreichische Partnerschaft (für MICADO vertreten durch die Universität Wien, die Universität Innsbruck, die Universität Linz und RICAM Linz [Österreichischen Akademie der Wissenschaften]); Co-PI: Joao Alves (Uni. Wien)

(Original text including high resolution images:: Hannelore Hämmerle (MPE) and others, )

Contact:at MPIA:

Dr. Jörg-Uwe Pott (CO-I of MICADO)
Tel: (+49|0) 6221 528-202

Dr. Klaus Jäger (Scientific Coordinator)
Tel: (+49|0) 6221 528-379

Contact at MPE:

Dr. Hannelore Hämmerle
(+49|0) 89 30000 3298

Dr. Klaus Jäger | Max-Planck-Institut für Astronomie

Further reports about: ESO Galaxies MPE Max-Planck-Institut astronomy black holes near-infrared wavelengths

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>