Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kepler spacecraft gives Iowa State's Kawaler, astronomers a look inside red giant stars

31.03.2011
NASA's Kepler Mission is giving astronomers such a clear view of changes in star brightness that they can now see clues about what's happening inside red giant stars.

"No one anticipated seeing this before the mission launched," said Steve Kawaler, an Iowa State University professor of physics and astronomy and a leader of the Kepler Asteroseismic Investigation. "That we could see so clearly down below a red giant star's surface was unexpected."

The astronomers' preliminary findings are published in two papers:

"Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star," published online March 17 in the Brevia section of the journal Science. The paper's principal author is Paul Beck of Leuven University in Belgium.

"Gravity Modes as a way to Distinguish between Hydrogen- and Helium-burning Red Giant Stars," published in the Letters section of the March 31 edition of Nature. The paper's principal author is Timothy Bedding of the University of Sydney in Australia.

Both papers describe how Kepler tracks tiny, regular changes in star brightness. Their regularity resembles steady drumbeats at different, precise rhythms. Each rhythm can be thought of as an individual tooth of a comb. Astronomers have studied those oscillations from ground-based telescopes to determine star basics such as mass and radius. But they noticed departures from the steady patterns in the Kepler data – "dandruff on the comb," Kawaler said.

These other patterns are caused by gravity mode oscillations. And those waves are allowing researchers to probe a star's core. The result, according to the Science paper, is information about the density and chemistry deep inside a star.

And, according to the Nature paper, the data also shows researchers whether a red giant star burns hydrogen in a shell surrounding the star or whether it has evolved to an age that it burns helium in the core. That's something astronomers hadn't been able to determine before Kepler.

"The stars burning helium in the core survived a helium flash," Kawaler said. "That transformation from stars burning a hydrogen shell is mysterious. We think it happens quickly and perhaps explosively. Now we can tell which stars have done that and which stars will do that."

That information will help astronomers better understand the life cycle of red giant stars. Our sun will evolve into a red giant in about 5 billion years.

Kepler launched March 6, 2009, from Florida's Cape Canaveral Air Force Station. The spacecraft is orbiting the sun carrying a photometer, or light meter, to measure changes in star brightness. The photometer includes a telescope 37 inches in diameter connected to a 95 megapixel CCD camera. That instrument is continually pointed at the Cygnus-Lyra region of the Milky Way galaxy. Its primary job is to use tiny variations in the brightness of the stars within its view to find earth-like planets that might be able to support life.

The Kepler Asteroseismic Investigation is also using data from that photometer to study stars. The investigation is led by a four-member steering committee: Kawaler, Chair Ron Gilliland of the Space Telescope Science Institute based in Baltimore, Jorgen Christensen-Dalsgaard and Hans Kjeldsen, both of Aarhus University in Aarhus, Denmark.

Kepler, Kawaler said, is a revolutionary tool for the study and understanding of stars. It's like having an instrument that simultaneously studies waves for clues about the ocean's surface and listens beneath the surface for clues about the ocean depths.

"But you have to listen very carefully," Kawaler said. "And you have to have an instrument sensitive enough to see and hear both."

Steve Kawaler | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>