Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kepler spacecraft gives Iowa State's Kawaler, astronomers a look inside red giant stars

31.03.2011
NASA's Kepler Mission is giving astronomers such a clear view of changes in star brightness that they can now see clues about what's happening inside red giant stars.

"No one anticipated seeing this before the mission launched," said Steve Kawaler, an Iowa State University professor of physics and astronomy and a leader of the Kepler Asteroseismic Investigation. "That we could see so clearly down below a red giant star's surface was unexpected."

The astronomers' preliminary findings are published in two papers:

"Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star," published online March 17 in the Brevia section of the journal Science. The paper's principal author is Paul Beck of Leuven University in Belgium.

"Gravity Modes as a way to Distinguish between Hydrogen- and Helium-burning Red Giant Stars," published in the Letters section of the March 31 edition of Nature. The paper's principal author is Timothy Bedding of the University of Sydney in Australia.

Both papers describe how Kepler tracks tiny, regular changes in star brightness. Their regularity resembles steady drumbeats at different, precise rhythms. Each rhythm can be thought of as an individual tooth of a comb. Astronomers have studied those oscillations from ground-based telescopes to determine star basics such as mass and radius. But they noticed departures from the steady patterns in the Kepler data – "dandruff on the comb," Kawaler said.

These other patterns are caused by gravity mode oscillations. And those waves are allowing researchers to probe a star's core. The result, according to the Science paper, is information about the density and chemistry deep inside a star.

And, according to the Nature paper, the data also shows researchers whether a red giant star burns hydrogen in a shell surrounding the star or whether it has evolved to an age that it burns helium in the core. That's something astronomers hadn't been able to determine before Kepler.

"The stars burning helium in the core survived a helium flash," Kawaler said. "That transformation from stars burning a hydrogen shell is mysterious. We think it happens quickly and perhaps explosively. Now we can tell which stars have done that and which stars will do that."

That information will help astronomers better understand the life cycle of red giant stars. Our sun will evolve into a red giant in about 5 billion years.

Kepler launched March 6, 2009, from Florida's Cape Canaveral Air Force Station. The spacecraft is orbiting the sun carrying a photometer, or light meter, to measure changes in star brightness. The photometer includes a telescope 37 inches in diameter connected to a 95 megapixel CCD camera. That instrument is continually pointed at the Cygnus-Lyra region of the Milky Way galaxy. Its primary job is to use tiny variations in the brightness of the stars within its view to find earth-like planets that might be able to support life.

The Kepler Asteroseismic Investigation is also using data from that photometer to study stars. The investigation is led by a four-member steering committee: Kawaler, Chair Ron Gilliland of the Space Telescope Science Institute based in Baltimore, Jorgen Christensen-Dalsgaard and Hans Kjeldsen, both of Aarhus University in Aarhus, Denmark.

Kepler, Kawaler said, is a revolutionary tool for the study and understanding of stars. It's like having an instrument that simultaneously studies waves for clues about the ocean's surface and listens beneath the surface for clues about the ocean depths.

"But you have to listen very carefully," Kawaler said. "And you have to have an instrument sensitive enough to see and hear both."

Steve Kawaler | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>