Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Kepler Finds a Very Wobbly Planet

Imagine living on a planet with seasons so erratic you would hardly know what to wear: Bermuda shorts or a heavy overcoat! That's the situation on a weird, wobbly world found by NASA's planet-hunting Kepler space telescope.

The planet, designated Kepler-413b, is located 2,300 light-years away in the constellation Cygnus. It circles a close pair of orange and red dwarf stars every 66 days.

Artwo: NASA, ESA, and A. Feild (STScI); Science: NASA, ESA, Kostov & McCullough/STScI/JHU, Carter/CfA, Deleuil & Diaz/Lab. d'Astro. de Marseille, Fabrycky/UChicago, Hebrard/IAParis, Hinse/Armagh/KASSI, Mazeh/UTel Aviv, Tsvetanov/JHU, Orosz & Welsh/SDSU

WOBBLY PLANET ORBITAL SCHEMATIC. This illustration shows the unusual orbit of planet Kepler-413b around a close pair of orange and red dwarf stars. The planet's 66-day orbit is tilted 2.5 degrees with respect to the plane of the binary star's orbit. The orbit of the planet wobbles around the central stars over 11 years, an effect called precession. This planet is also very unusual in that it can potentially precess wildly on its spin axis, much like a child's top. The tilt of the spin axis of the planet can vary by as much as 30 degrees over 11 years, presumably leading to the rapid and erratic changes in seasons on the planet and any accompanying large moons. As Kepler views the system nearly edge on, sometimes the planet passes in front of the binary pair, and sometimes it does not. The next transit is not predicted to occur until 2020. This is due not only to the orbital wobble, but also to the small diameters of the stars and the fact that the orbital plane of the stars is not exactly edge-on to Kepler's line of sight. (The vertical axis on the right panel is exaggerated by a factor of 10, for viewing purposes only.)

But what makes this planet very unusual is that it wobbles, or precesses, wildly on its spin axis, much like a child's top. The tilt of the spin axis of the planet can vary by as much as 30 degrees over 11 years, leading to the rapid and erratic changes in seasons. Contrast this to the Earth's rotational precession-23.5 degrees over 26,000 years. The fact that this far-off planet is precessing on a human timescale is simply amazing, say researchers.

Chances are you really wouldn't be wondering what to wear on this planet because it's a bit too warm for life as we know it. It orbits slightly closer to the stars than the inner edge of the system's habitable zone, a region where temperatures allow for liquid water to exist. It's also a giant gas planet of about 65 Earth masses -- a super-Neptune -- so there wouldn't be any surface to stand upon.

The planet's orbit is unusual in that it is tilted 2.5 degrees with respect to the plane of the binary star's orbit. Over an 11-year period, the planet's orbit too would appear to wobble as it circles around the star pair.

Astronomers using Kepler discovered this characteristic when they found an unusual pattern of transits for Kepler-413b. Normally, transiting planets are seen passing in front of their parent stars like clockwork. Kepler finds such planets by noticing the dimming of the parent star -- or in this case, stars -- as the planet travels in front of one of them.

"What we see in the Kepler data over 1,500 days is three transits in the first 180 days (one transit every 66 days), then we had 800 days with no transits at all," explained Veselin Kostov, the principal investigator on the observation. Kostov is affiliated with the Space Telescope Science Institute (STScI) and the Johns Hopkins University (JHU) in Baltimore, Md. "After that, we saw five more transits in a row."

The next transit is not predicted to occur until 2020. This is due not only to the orbital wobble, but also to the small diameters of the stars and the fact that the orbital plane of the stars is not exactly edge-on to our line of sight. It just so happened that the astronomers caught the planet while it was transiting.

Because of the orbital wobble, the orbit continuously moves up or down relative to our view. This change is large enough that sometimes it misses passing in front of the stars, as seen from Earth.

To understand the complicated motions of this planet, imagine a bicycle wheel lying on its side. Spin the wheel while it is lying on the ground, and it will wobble. This is like the orbit of the planet. Now imagine putting a spinning top on the rim of the horizontal, spinning wheel. This is like the wobbling motion of the planet's rotational precession.

Astronomers are still trying to explain why this planet is out of alignment with its stars. There could be other planetary bodies in the system that tilted the orbit. Or, it could be that a third star nearby that is a visual companion may actually be gravitationally bound to the system and exerting an influence.

"Presumably there are planets out there like this one that we're not seeing because we're in the unfavorable period," said Peter McCullough, a team member from STScI and JHU. "And that's one of the things that Veselin is researching: Is there a silent majority of things that we're not seeing?"

The team's results will be published in The Astrophysical Journal and are available online at Jan. 29

For images and more information about Kepler-413b, visit:

For more information about the Kepler space telescope, visit:

NASA's Ames Research Center at Moffett Field, Calif., is responsible for the Kepler mission concept, ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute (STScI) in Baltimore, Md., archives, hosts, and distributes Kepler science data. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Kepler is NASA's 10th Discovery mission and was funded by the agency's Science Mission Directorate.

Ann Jenkins / Ray Villard | Newswise
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>