Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kepler Finds a Very Wobbly Planet

06.02.2014
Imagine living on a planet with seasons so erratic you would hardly know what to wear: Bermuda shorts or a heavy overcoat! That's the situation on a weird, wobbly world found by NASA's planet-hunting Kepler space telescope.

The planet, designated Kepler-413b, is located 2,300 light-years away in the constellation Cygnus. It circles a close pair of orange and red dwarf stars every 66 days.


Artwo: NASA, ESA, and A. Feild (STScI); Science: NASA, ESA, Kostov & McCullough/STScI/JHU, Carter/CfA, Deleuil & Diaz/Lab. d'Astro. de Marseille, Fabrycky/UChicago, Hebrard/IAParis, Hinse/Armagh/KASSI, Mazeh/UTel Aviv, Tsvetanov/JHU, Orosz & Welsh/SDSU

WOBBLY PLANET ORBITAL SCHEMATIC. This illustration shows the unusual orbit of planet Kepler-413b around a close pair of orange and red dwarf stars. The planet's 66-day orbit is tilted 2.5 degrees with respect to the plane of the binary star's orbit. The orbit of the planet wobbles around the central stars over 11 years, an effect called precession. This planet is also very unusual in that it can potentially precess wildly on its spin axis, much like a child's top. The tilt of the spin axis of the planet can vary by as much as 30 degrees over 11 years, presumably leading to the rapid and erratic changes in seasons on the planet and any accompanying large moons. As Kepler views the system nearly edge on, sometimes the planet passes in front of the binary pair, and sometimes it does not. The next transit is not predicted to occur until 2020. This is due not only to the orbital wobble, but also to the small diameters of the stars and the fact that the orbital plane of the stars is not exactly edge-on to Kepler's line of sight. (The vertical axis on the right panel is exaggerated by a factor of 10, for viewing purposes only.)

But what makes this planet very unusual is that it wobbles, or precesses, wildly on its spin axis, much like a child's top. The tilt of the spin axis of the planet can vary by as much as 30 degrees over 11 years, leading to the rapid and erratic changes in seasons. Contrast this to the Earth's rotational precession-23.5 degrees over 26,000 years. The fact that this far-off planet is precessing on a human timescale is simply amazing, say researchers.

Chances are you really wouldn't be wondering what to wear on this planet because it's a bit too warm for life as we know it. It orbits slightly closer to the stars than the inner edge of the system's habitable zone, a region where temperatures allow for liquid water to exist. It's also a giant gas planet of about 65 Earth masses -- a super-Neptune -- so there wouldn't be any surface to stand upon.

The planet's orbit is unusual in that it is tilted 2.5 degrees with respect to the plane of the binary star's orbit. Over an 11-year period, the planet's orbit too would appear to wobble as it circles around the star pair.

Astronomers using Kepler discovered this characteristic when they found an unusual pattern of transits for Kepler-413b. Normally, transiting planets are seen passing in front of their parent stars like clockwork. Kepler finds such planets by noticing the dimming of the parent star -- or in this case, stars -- as the planet travels in front of one of them.

"What we see in the Kepler data over 1,500 days is three transits in the first 180 days (one transit every 66 days), then we had 800 days with no transits at all," explained Veselin Kostov, the principal investigator on the observation. Kostov is affiliated with the Space Telescope Science Institute (STScI) and the Johns Hopkins University (JHU) in Baltimore, Md. "After that, we saw five more transits in a row."

The next transit is not predicted to occur until 2020. This is due not only to the orbital wobble, but also to the small diameters of the stars and the fact that the orbital plane of the stars is not exactly edge-on to our line of sight. It just so happened that the astronomers caught the planet while it was transiting.

Because of the orbital wobble, the orbit continuously moves up or down relative to our view. This change is large enough that sometimes it misses passing in front of the stars, as seen from Earth.

To understand the complicated motions of this planet, imagine a bicycle wheel lying on its side. Spin the wheel while it is lying on the ground, and it will wobble. This is like the orbit of the planet. Now imagine putting a spinning top on the rim of the horizontal, spinning wheel. This is like the wobbling motion of the planet's rotational precession.

Astronomers are still trying to explain why this planet is out of alignment with its stars. There could be other planetary bodies in the system that tilted the orbit. Or, it could be that a third star nearby that is a visual companion may actually be gravitationally bound to the system and exerting an influence.

"Presumably there are planets out there like this one that we're not seeing because we're in the unfavorable period," said Peter McCullough, a team member from STScI and JHU. "And that's one of the things that Veselin is researching: Is there a silent majority of things that we're not seeing?"

The team's results will be published in The Astrophysical Journal and are available online at Jan. 29 http://arxiv.org/abs/1401.7275.

For images and more information about Kepler-413b, visit:

http://hubblesite.org/news/2014/12

For more information about the Kepler space telescope, visit:

http://www.nasa.gov/kepler

NASA's Ames Research Center at Moffett Field, Calif., is responsible for the Kepler mission concept, ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute (STScI) in Baltimore, Md., archives, hosts, and distributes Kepler science data. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Kepler is NASA's 10th Discovery mission and was funded by the agency's Science Mission Directorate.

Ann Jenkins / Ray Villard | Newswise
Further information:
http://www.stsci.edu
http://www.nasa.gov/kepler

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>