Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kepler's Astounding Haul of Multiple-Planet Systems

25.05.2011
NASA's Kepler spacecraft is proving itself to be a prolific planet hunter. Within just the first four months of data, astronomers have found evidence for more than 1,200 planetary candidates. Of those, 408 reside in systems containing two or more planets, and most of those look very different than our solar system.

In particular, the Kepler systems with multiple planets are much flatter than our solar system. They have to be for Kepler to spot them. Kepler watches for a planet to cross in front of its star, blocking a tiny fraction of the star's light. By measuring how much the star dims during such a transit, astronomers can calculate the planet's size, and by observing the time between successive events they can derive the orbital period - how long it takes the planet to revolve around its star.

To see a transit, the planet's orbit must be edge-on to our line of sight. To see multiple transiting planets, they all must be edge-on (or nearly so).

"We didn't anticipate that we would find so many multiple-transit systems. We thought we might see two or three. Instead, we found more than 100," said Smithsonian astronomer David Latham (Harvard-Smithsonian Center for Astrophysics).

Latham presented the findings today in a press conference at the 218th meeting of the American Astronomical Society.

In our solar system, some planet orbits are tilted by up to 7 degrees, meaning that an alien astronomer looking for transits wouldn't be able to detect all eight planets. (In particular, they would miss Mercury and Venus.) The systems spotted by Kepler are much flatter, with orbits tilted less than 1 degree.

Why are they so flat? One clue comes from the planets themselves. The multiplanet systems found by Kepler are dominated by planets smaller than Neptune. They lack Jupiter-sized gas giants. Scientists believe that a gas giant's powerful gravity tends to disrupt planetary systems, tilting the orbits of neighboring worlds.

"Jupiters are the 800-pound gorillas stirring things up during the early history of these systems," explained Latham. "Other studies have found plenty of systems with big planets, but they're not flat."

Multiple-planet systems may offer a chance for confirming the densities of small, rocky worlds. The more massive a planet, the easier it is to detect using radial velocity measurements (essentially the star's wobble as a planet's gravity tugs it). Earth-sized worlds in Earth-sized orbits aren't massive enough to make a radial velocity signal that's detectable with present technology.

In systems with more than one transiting planet, astronomers have another option: transit timing variations. They can measure how the time between successive transits changes from orbit to orbit due to mutual gravitational interactions between the planets. The size of the effect depends on the planets' masses.

"These planets are pulling and pushing on each other, and we can measure that," said Smithsonian astronomer Matthew Holman. "Dozens of the systems Kepler found show signs of transit timing variations."

As Kepler continues to gather data, it will be able to spot planets with wider orbits, including some in the habitable zones of their stars. Transit timing variations may play a key role in confirming the first rocky planets with the right temperature for water to be liquid on their surfaces.

NASA Ames Research Center is responsible for the ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed the Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system, and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>