Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kent State researchers play lead role in significant new physics discovery

05.03.2010
Team of international researchers finds most massive antinucleus to date

Ten Kent State University researchers are part of a team of international scientists who have discovered the most massive antinucleus discovered to date.

They are part of an international team of scientists studying high-energy collision of gold ions at the Relativistic Heavy Ion Collidor (RHIC), a 2.4 mile-circumference particle accelerator at the U.S Department of Energy's Brookhaven National Laboratory in Upton, N.Y.

The new antinucleus, discovered at RHIC's STAR detector, is a negatively charged state of antimatter containing an antiproton, an antineutron, and an anti-Lambda particle. It is also the first antinucleus containing an anti-strange quark, an exotic antimatter particle.

The STAR detector specializes in tracking the thousands of particles produced by each nucleus-nucleus collision at RHIC. Weighing 1,200 tons and as large as a house, STAR is a massive detector. It is used to search for signatures of the form of matter that RHIC was designed to create.

Kent State physics professor Declan Keane and his postdoctoral researcher Jinhui Chen are lead authors of the new paper outlining the new discoveries. The findings will be published online by the journal Science at the Science Express Web site today. Science and Science Express are published by the American Association for the Advancement of Science, the world's largest general scientific organization.

The search for antimatter in STAR and the study of its properties was begun by Chen in the fall of 2008, under the supervision of Keane.

"Jinhui Chen spent many months at Brookhaven glued to his computer and studying the data," said Keane. "While the findings being released this week are the work of hundreds of scientists, this discovery would not have happened without Chen's diligent research." Chen not only found the first antinucleus of this type, he actually found 70 examples of the new particle which is all the more significant, Keane said.

Dr. Chen's research was supported by a grant from the U.S. Department of Energy. Keane and Kent State professor Spiros Margetis were principal investigators for the research. Dr. Chen recently accepted a tenured assistant scientist position at the Shanghai Institute of Applied Physics, a unit of the Chinese Academy of Sciences. "Chinese institutes are very quick off the mark when it comes to recruiting top scientific talent," Keane explained.

Since 2000, other teams have looked for exotic antimatter using the STAR detector but there were limitations regarding data collection and the capability of the device. "In the fall of 2008, it seemed like the time was right to begin to search again," Keane said. RHIC's STAR collaboration is now poised to resume antimatter studies with greatly enhanced capabilities. The scientists expect to increase their data by about a factor of 10 in the next few years.

Collisions at RHIC fleetingly produce conditions that existed a few microseconds after the Big Bang, which scientists believe gave birth to the universe as we know it some 13.7 billion years ago.

"This discovery is significant because it plays a role in one of the fundamental puzzles of physics," said Bryon Anderson, professor and chair of the physics department at Kent State and a contributor to the research. "There is no definitive explanation for the asymmetries between matter and antimatter in our universe, and this research opens the door to further exploration of this area."

Brookhaven physicist Zhangbu Xu, another one of the lead authors, agrees this research paves the way for a new frontier of physics. "A solution to this major unsolved problem will require measurements of subtle deviations from perfect symmetry between matter and antimatter, and there are good prospects for future antimatter measurements at RHIC to address this key issue," Xu said.

"This experimental discovery may have unprecedented consequences for our view of the world," said theoretical physicist Horst Stoecker, vice president of the Helmholtz Association of German National Laboratories. "This antimatter pushes open the door to new dimensions in the nuclear chart — an idea that just a few years ago would have been viewed as impossible."

The work reported in Science also has implications for cosmic ray experiments searching for new physics such as dark matter, which is thought to be responsible for about a quarter of the mass of the universe.

Several other members of the Kent State physics department are co-authors of the new paper by virtue of their vital contributions to constructing and operating the various interlocking subsystems of the STAR detector, including Dr. Jonathan Bouchet, Dr. Wei-Ming Zhang, and graduate students Jeremy Alford, Jaiby Joseph, Yadav Pandit and Joe Vanfossen.

The STAR collaboration is composed of 54 institutions from 13 countries. Research at RHIC is funded primarily by the U.S. Department of Energy's Office of Science and by various national and international collaborating institutions.

One of 10 national laboratories overseen and primarily funded by the U.S. Department of Energy, Brookhaven National Laboratory conducts research in the physical, biomedical and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers.

Bryon Anderson | EurekAlert!
Further information:
http://www.kent.edu

Further reports about: Big Bang Chinese herbs Energy' Laboratory RHIC RHIC' Science Express Science TV Venus Express

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>