Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kent State researchers play lead role in significant new physics discovery

05.03.2010
Team of international researchers finds most massive antinucleus to date

Ten Kent State University researchers are part of a team of international scientists who have discovered the most massive antinucleus discovered to date.

They are part of an international team of scientists studying high-energy collision of gold ions at the Relativistic Heavy Ion Collidor (RHIC), a 2.4 mile-circumference particle accelerator at the U.S Department of Energy's Brookhaven National Laboratory in Upton, N.Y.

The new antinucleus, discovered at RHIC's STAR detector, is a negatively charged state of antimatter containing an antiproton, an antineutron, and an anti-Lambda particle. It is also the first antinucleus containing an anti-strange quark, an exotic antimatter particle.

The STAR detector specializes in tracking the thousands of particles produced by each nucleus-nucleus collision at RHIC. Weighing 1,200 tons and as large as a house, STAR is a massive detector. It is used to search for signatures of the form of matter that RHIC was designed to create.

Kent State physics professor Declan Keane and his postdoctoral researcher Jinhui Chen are lead authors of the new paper outlining the new discoveries. The findings will be published online by the journal Science at the Science Express Web site today. Science and Science Express are published by the American Association for the Advancement of Science, the world's largest general scientific organization.

The search for antimatter in STAR and the study of its properties was begun by Chen in the fall of 2008, under the supervision of Keane.

"Jinhui Chen spent many months at Brookhaven glued to his computer and studying the data," said Keane. "While the findings being released this week are the work of hundreds of scientists, this discovery would not have happened without Chen's diligent research." Chen not only found the first antinucleus of this type, he actually found 70 examples of the new particle which is all the more significant, Keane said.

Dr. Chen's research was supported by a grant from the U.S. Department of Energy. Keane and Kent State professor Spiros Margetis were principal investigators for the research. Dr. Chen recently accepted a tenured assistant scientist position at the Shanghai Institute of Applied Physics, a unit of the Chinese Academy of Sciences. "Chinese institutes are very quick off the mark when it comes to recruiting top scientific talent," Keane explained.

Since 2000, other teams have looked for exotic antimatter using the STAR detector but there were limitations regarding data collection and the capability of the device. "In the fall of 2008, it seemed like the time was right to begin to search again," Keane said. RHIC's STAR collaboration is now poised to resume antimatter studies with greatly enhanced capabilities. The scientists expect to increase their data by about a factor of 10 in the next few years.

Collisions at RHIC fleetingly produce conditions that existed a few microseconds after the Big Bang, which scientists believe gave birth to the universe as we know it some 13.7 billion years ago.

"This discovery is significant because it plays a role in one of the fundamental puzzles of physics," said Bryon Anderson, professor and chair of the physics department at Kent State and a contributor to the research. "There is no definitive explanation for the asymmetries between matter and antimatter in our universe, and this research opens the door to further exploration of this area."

Brookhaven physicist Zhangbu Xu, another one of the lead authors, agrees this research paves the way for a new frontier of physics. "A solution to this major unsolved problem will require measurements of subtle deviations from perfect symmetry between matter and antimatter, and there are good prospects for future antimatter measurements at RHIC to address this key issue," Xu said.

"This experimental discovery may have unprecedented consequences for our view of the world," said theoretical physicist Horst Stoecker, vice president of the Helmholtz Association of German National Laboratories. "This antimatter pushes open the door to new dimensions in the nuclear chart — an idea that just a few years ago would have been viewed as impossible."

The work reported in Science also has implications for cosmic ray experiments searching for new physics such as dark matter, which is thought to be responsible for about a quarter of the mass of the universe.

Several other members of the Kent State physics department are co-authors of the new paper by virtue of their vital contributions to constructing and operating the various interlocking subsystems of the STAR detector, including Dr. Jonathan Bouchet, Dr. Wei-Ming Zhang, and graduate students Jeremy Alford, Jaiby Joseph, Yadav Pandit and Joe Vanfossen.

The STAR collaboration is composed of 54 institutions from 13 countries. Research at RHIC is funded primarily by the U.S. Department of Energy's Office of Science and by various national and international collaborating institutions.

One of 10 national laboratories overseen and primarily funded by the U.S. Department of Energy, Brookhaven National Laboratory conducts research in the physical, biomedical and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers.

Bryon Anderson | EurekAlert!
Further information:
http://www.kent.edu

Further reports about: Big Bang Chinese herbs Energy' Laboratory RHIC RHIC' Science Express Science TV Venus Express

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>