Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keck Telescope and 'cosmic lens' resolve nature and fate of early star-forming galaxy

10.10.2008
The combination demonstrates the eventual power of the 30 meter telescope

Astronomers at the California Institute of Technology (Caltech) and their colleagues have provided unique insight into the nature of a young star-forming galaxy as it appeared only two billion years after the Big Bang and determined how the galaxy may eventually evolve to become a system like our own Milky Way.

The team made their observations by coupling two techniques, gravitational lensing--which makes use of an effect first predicted by Albert Einstein in which the gravitational field of massive objects, such as foreground galaxies, bends light rays from objects located a distance behind, thus magnifying the appearance of distant sources--and laser-assisted guide star (LGS) adaptive optics (AO) on the 10-meter Keck Telescope in Hawaii. Adaptive optics corrects the blurring effects of Earth's atmosphere by real-time monitoring of the signal from a natural guide star or an artificial guide star.

Gravitational lensing enlarged the distant galaxy in angular size by a factor of about 8 in each direction. Together with the enhanced resolution using adaptive optics, this allowed the team to determine the internal velocity structure of the remote galaxy, located 11 billion light-years from Earth, and hence its likely future evolution.

The researchers found that the distant galaxy, which is typical in many respects to others at that epoch, shows clear signs of orderly rotation. The finding, in association with observations conducted at millimeter wavelengths, which are sensitive to cold molecular gas (an indicator of galactic rotation), suggests that the source is in the early stages of assembling a spiral disk with a central nucleus similar to those seen in spiral galaxies at the present day.

Using the Hubble Space Telescope, the team located a distinctive galaxy dubbed the "Cosmic Eye" because its form is distorted into a ring-shaped structure by the gravitational field of a foreground galaxy.

"Gravity has effectively provided us with an additional zoom lens, enabling us to study this distant galaxy on scales approaching only a few hundred light-years. This is 10 times finer sampling than hitherto possible," explains postdoctoral research scholar Dan Stark of Caltech, the leader of the study. "As a result, we can see, for the first time, that a typical-sized young galaxy is spinning and slowly evolving into a spiral galaxy much like our own Milky Way," he says.

The research, described in the October 9 issue of the journal Nature, provides a demonstration of the likely power of the future Thirty Meter Telescope (TMT), the first of a new generation of large telescopes designed to exploit AO.

When completed in the latter half of the next decade, TMT's large aperture and improved optics will produce images with an angular resolution three times better than the 10-meter Keck and 12 times better than the Hubble Space Telescope, at similar wavelengths. Because of the significant improvement in angular resolution provided by AO, the TMT will be able to study the internal properties of small distant galaxies, seen as they were when the universe was young.

Likewise, the Atacama Large Millimeter Array (ALMA), a large interferometer being completed in Chile, will provide a major step forward in mapping the extremely faint emission from cold hydrogen gas--the principal component of young, distant galaxies and a clear marker of cold molecular gas--compared to the coarser capabilities of present facilities. In their recent research, the Caltech-led team has provided a glimpse of what can be done with the superior performance expected of TMT and ALMA.

The key spectroscopic observations were made with the OSIRIS instrument, developed specifically for the Keck AO system by astrophysicist James Larkin and collaborators at the University of California, Los Angeles. Stark and his coworkers used the OSIRIS instrument to map the velocity across the source in fine detail, allowing them to demonstrate that it has a primitive rotating disk.

To aid in their analysis, the researchers combined data from the Keck Observatory with data taken at millimeter wavelengths by the Plateau de Bure Interferometer (PdBI), located in the French Alps. This PdBI instrument is sensitive to the distribution of cold gas that has yet to collapse to form stars. These observations give a hint of what will soon be routine with the ALMA interferometer.

"Remarkably, the cold gas traced by our millimeter observations shares the rotation shown by the young stars seen in the Keck observations. The distribution of gas seen with our amazing resolution indicates we are witnessing the gradual buildup of a spiral disk with a central nuclear component," explains coinvestigator Mark Swinbank of Durham University, who was involved in both the Keck and PdBI observations.

This work demonstrates how important angular resolution has become in ensuring progress in extragalactic astronomy. This will be the key gain of both the TMT and ALMA facilities.

"For decades, astronomers were content to build bigger telescopes, arguing that light-gathering power was the primary measure of a telescope's ability," explains Richard S. Ellis, Steele Family Professor of Astronomy at Caltech, a coauthor on the Nature study, and a member of the TMT board of directors. "However, adaptive optics and interferometry are now providing ground-based astronomers with the additional gain of angular resolution. The combination of a large aperture and exquisite resolution is very effective for studying the internal properties of distant and faint sources seen as they were when the universe was young. This is the exciting future we can expect with TMT and ALMA, and, thanks to the magnification of a gravitational lens, we have an early demonstration here in this study," he says.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://www.keckobservatory.org/

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>