Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Keck Telescope and 'cosmic lens' resolve nature and fate of early star-forming galaxy

The combination demonstrates the eventual power of the 30 meter telescope

Astronomers at the California Institute of Technology (Caltech) and their colleagues have provided unique insight into the nature of a young star-forming galaxy as it appeared only two billion years after the Big Bang and determined how the galaxy may eventually evolve to become a system like our own Milky Way.

The team made their observations by coupling two techniques, gravitational lensing--which makes use of an effect first predicted by Albert Einstein in which the gravitational field of massive objects, such as foreground galaxies, bends light rays from objects located a distance behind, thus magnifying the appearance of distant sources--and laser-assisted guide star (LGS) adaptive optics (AO) on the 10-meter Keck Telescope in Hawaii. Adaptive optics corrects the blurring effects of Earth's atmosphere by real-time monitoring of the signal from a natural guide star or an artificial guide star.

Gravitational lensing enlarged the distant galaxy in angular size by a factor of about 8 in each direction. Together with the enhanced resolution using adaptive optics, this allowed the team to determine the internal velocity structure of the remote galaxy, located 11 billion light-years from Earth, and hence its likely future evolution.

The researchers found that the distant galaxy, which is typical in many respects to others at that epoch, shows clear signs of orderly rotation. The finding, in association with observations conducted at millimeter wavelengths, which are sensitive to cold molecular gas (an indicator of galactic rotation), suggests that the source is in the early stages of assembling a spiral disk with a central nucleus similar to those seen in spiral galaxies at the present day.

Using the Hubble Space Telescope, the team located a distinctive galaxy dubbed the "Cosmic Eye" because its form is distorted into a ring-shaped structure by the gravitational field of a foreground galaxy.

"Gravity has effectively provided us with an additional zoom lens, enabling us to study this distant galaxy on scales approaching only a few hundred light-years. This is 10 times finer sampling than hitherto possible," explains postdoctoral research scholar Dan Stark of Caltech, the leader of the study. "As a result, we can see, for the first time, that a typical-sized young galaxy is spinning and slowly evolving into a spiral galaxy much like our own Milky Way," he says.

The research, described in the October 9 issue of the journal Nature, provides a demonstration of the likely power of the future Thirty Meter Telescope (TMT), the first of a new generation of large telescopes designed to exploit AO.

When completed in the latter half of the next decade, TMT's large aperture and improved optics will produce images with an angular resolution three times better than the 10-meter Keck and 12 times better than the Hubble Space Telescope, at similar wavelengths. Because of the significant improvement in angular resolution provided by AO, the TMT will be able to study the internal properties of small distant galaxies, seen as they were when the universe was young.

Likewise, the Atacama Large Millimeter Array (ALMA), a large interferometer being completed in Chile, will provide a major step forward in mapping the extremely faint emission from cold hydrogen gas--the principal component of young, distant galaxies and a clear marker of cold molecular gas--compared to the coarser capabilities of present facilities. In their recent research, the Caltech-led team has provided a glimpse of what can be done with the superior performance expected of TMT and ALMA.

The key spectroscopic observations were made with the OSIRIS instrument, developed specifically for the Keck AO system by astrophysicist James Larkin and collaborators at the University of California, Los Angeles. Stark and his coworkers used the OSIRIS instrument to map the velocity across the source in fine detail, allowing them to demonstrate that it has a primitive rotating disk.

To aid in their analysis, the researchers combined data from the Keck Observatory with data taken at millimeter wavelengths by the Plateau de Bure Interferometer (PdBI), located in the French Alps. This PdBI instrument is sensitive to the distribution of cold gas that has yet to collapse to form stars. These observations give a hint of what will soon be routine with the ALMA interferometer.

"Remarkably, the cold gas traced by our millimeter observations shares the rotation shown by the young stars seen in the Keck observations. The distribution of gas seen with our amazing resolution indicates we are witnessing the gradual buildup of a spiral disk with a central nuclear component," explains coinvestigator Mark Swinbank of Durham University, who was involved in both the Keck and PdBI observations.

This work demonstrates how important angular resolution has become in ensuring progress in extragalactic astronomy. This will be the key gain of both the TMT and ALMA facilities.

"For decades, astronomers were content to build bigger telescopes, arguing that light-gathering power was the primary measure of a telescope's ability," explains Richard S. Ellis, Steele Family Professor of Astronomy at Caltech, a coauthor on the Nature study, and a member of the TMT board of directors. "However, adaptive optics and interferometry are now providing ground-based astronomers with the additional gain of angular resolution. The combination of a large aperture and exquisite resolution is very effective for studying the internal properties of distant and faint sources seen as they were when the universe was young. This is the exciting future we can expect with TMT and ALMA, and, thanks to the magnification of a gravitational lens, we have an early demonstration here in this study," he says.

Kathy Svitil | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>



Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

More VideoLinks >>>