Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kaiserslautern physicists observe diffusion of individual atoms in light bath

11.10.2016

In a combination of experiments and theory the diffusion of individual atoms in periodic systems was understood for the first time. The interaction of individual atoms with light at ultralow temperatures close to the absolute zero temperature point provides new insights into ergodicity, the basic assumption of thermodynamics. Quantum physicists at University of Kaiserslautern have published their results together with colleagues in the renowned scientific journal “Nature Physics”.

Diffusion is a universal physical phenomenon, describing the motion of particles in their particular environment, whether solid, liquid or gaseous. The first observation of Robert Brown and the subsequent explanation by Albert Einstein are already more than a hundred years old: Robert Brown observed the random, irregular dithering movement of pollen in a liquid.


Series of fluores-cence images, show-ing the diffusion of a single atom.

University of Kaiserslautern/Widera

Albert Einstein and his colleague Marian Smoluchowski interpreted this "Brownian motion" correctly as a result of random collisions of molecules of the liquid with the pollen. The diffusion in complex systems goes one step further and can have very diverse characteristics: Tumor movement in living organisms, DNA transport within cells, ion flow in batteries, moving atoms on surfaces - all these are diffusion processes in complex systems.

Uncovering of the underlying mechanisms is of great interest as these could reach far into daily applications one day. Physical studies of ultracold atoms, carried out at the University of Kaiserslautern, now provide an understanding of diffusion in periodic structures, relevant for various complex systems.

Physicists at the University of Kaiserslautern together with scientists from the Universities of Erlangen-Nuremberg and Kyoto in Japan have made an important step towards the fundamental understanding of complex diffusion and the interpretation of their experimental data. For the study, published in the prestigious journal Nature Physics, the Kaiserslautern team around Professor Widera (Department of Physics and State Research Center OPTIMAS) developed a novel model system:

A single atom is cooled by lasers near to absolute zero temperature and trapped by light within a near-perfect vacuum. The atom is then transferred into an environment of a light field in which the light-absorption and light-emission of the atoms act as collisions with other particles. In this environment, the diffusion can be readily set and the motion of the atom be tracked by a camera.

In parallel, theoretical physicists from Erlangen-Nuremberg and Kyoto developed a model for the description of the dynamics of the system. A central aspect here was to understand the processes in terms of the physical phenomenon of ergodicity. Due to the excellent agreement between experiment and theory, diffusion processes can now be understood beyond Brownian motion. These results have potentially an impact on the understanding of various complex systems in medicine, biology, physics and engineering in the future.

Fundamentals of diffusion

The motion of individual cells in the body or the transport of charge carriers in energy storage systems can be understood only in the context of the particular environment. The particles within the environment encounter permanent collisions with a cell or a carrier, thus influencing their motion. These processes can in many cases be described through Brownian motion by Einstein’s theory. Sometimes the observations can, however, not be described within this model, and in some cases this non-Brownian dynamics are not obvious at first glance. The scientists of the three universities have succeeded in showing both theoretically and experimentally, how the diffusion in certain complex systems can be characterized.

Ergodicity is a key to understanding complex diffusions

A central aspect of the study was to investigate the atomic system on time scales that are relevant for the establishment of ergodicity. Ergodicity is a basic assumption of thermodynamics and an important factor for the description of diffusion processes. In simple words, the ergodicity hypothesis states that in an ensemble of particles, the motion of a single particle is representative for the entire ensemble. This assumption is usually valid for all observed phenomena in our everyday lives. Strictly seen, this applies, nevertheless, for most systems only on very long time scales. The scientists could now show in their study that even seemingly "normal" diffusion processes in certain cases may violate ergodicity on surprisingly long time scales. These findings have interesting implications for understanding the diffusion in complex systems and can help, for example, to re-evaluate and interpret observations and measurements in biological systems.

The study was published in the renowned journal “Nature Physics”: „Nonergodic diffusion of single atoms in a periodic potential“.
DOI: DOI 10.1038/nphys3911

Further questions will be answered by:
Prof. Dr. Artur Widera
TU Kaiserslautern
Tel: 0631-205-4130
E-Mail: widera@physik.uni-kl.de

Katrin Müller | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>