Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Kaiserslautern physicists observe diffusion of individual atoms in light bath


In a combination of experiments and theory the diffusion of individual atoms in periodic systems was understood for the first time. The interaction of individual atoms with light at ultralow temperatures close to the absolute zero temperature point provides new insights into ergodicity, the basic assumption of thermodynamics. Quantum physicists at University of Kaiserslautern have published their results together with colleagues in the renowned scientific journal “Nature Physics”.

Diffusion is a universal physical phenomenon, describing the motion of particles in their particular environment, whether solid, liquid or gaseous. The first observation of Robert Brown and the subsequent explanation by Albert Einstein are already more than a hundred years old: Robert Brown observed the random, irregular dithering movement of pollen in a liquid.

Series of fluores-cence images, show-ing the diffusion of a single atom.

University of Kaiserslautern/Widera

Albert Einstein and his colleague Marian Smoluchowski interpreted this "Brownian motion" correctly as a result of random collisions of molecules of the liquid with the pollen. The diffusion in complex systems goes one step further and can have very diverse characteristics: Tumor movement in living organisms, DNA transport within cells, ion flow in batteries, moving atoms on surfaces - all these are diffusion processes in complex systems.

Uncovering of the underlying mechanisms is of great interest as these could reach far into daily applications one day. Physical studies of ultracold atoms, carried out at the University of Kaiserslautern, now provide an understanding of diffusion in periodic structures, relevant for various complex systems.

Physicists at the University of Kaiserslautern together with scientists from the Universities of Erlangen-Nuremberg and Kyoto in Japan have made an important step towards the fundamental understanding of complex diffusion and the interpretation of their experimental data. For the study, published in the prestigious journal Nature Physics, the Kaiserslautern team around Professor Widera (Department of Physics and State Research Center OPTIMAS) developed a novel model system:

A single atom is cooled by lasers near to absolute zero temperature and trapped by light within a near-perfect vacuum. The atom is then transferred into an environment of a light field in which the light-absorption and light-emission of the atoms act as collisions with other particles. In this environment, the diffusion can be readily set and the motion of the atom be tracked by a camera.

In parallel, theoretical physicists from Erlangen-Nuremberg and Kyoto developed a model for the description of the dynamics of the system. A central aspect here was to understand the processes in terms of the physical phenomenon of ergodicity. Due to the excellent agreement between experiment and theory, diffusion processes can now be understood beyond Brownian motion. These results have potentially an impact on the understanding of various complex systems in medicine, biology, physics and engineering in the future.

Fundamentals of diffusion

The motion of individual cells in the body or the transport of charge carriers in energy storage systems can be understood only in the context of the particular environment. The particles within the environment encounter permanent collisions with a cell or a carrier, thus influencing their motion. These processes can in many cases be described through Brownian motion by Einstein’s theory. Sometimes the observations can, however, not be described within this model, and in some cases this non-Brownian dynamics are not obvious at first glance. The scientists of the three universities have succeeded in showing both theoretically and experimentally, how the diffusion in certain complex systems can be characterized.

Ergodicity is a key to understanding complex diffusions

A central aspect of the study was to investigate the atomic system on time scales that are relevant for the establishment of ergodicity. Ergodicity is a basic assumption of thermodynamics and an important factor for the description of diffusion processes. In simple words, the ergodicity hypothesis states that in an ensemble of particles, the motion of a single particle is representative for the entire ensemble. This assumption is usually valid for all observed phenomena in our everyday lives. Strictly seen, this applies, nevertheless, for most systems only on very long time scales. The scientists could now show in their study that even seemingly "normal" diffusion processes in certain cases may violate ergodicity on surprisingly long time scales. These findings have interesting implications for understanding the diffusion in complex systems and can help, for example, to re-evaluate and interpret observations and measurements in biological systems.

The study was published in the renowned journal “Nature Physics”: „Nonergodic diffusion of single atoms in a periodic potential“.
DOI: DOI 10.1038/nphys3911

Further questions will be answered by:
Prof. Dr. Artur Widera
TU Kaiserslautern
Tel: 0631-205-4130

Katrin Müller | Technische Universität Kaiserslautern
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>