Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State physics lab becoming a frontrunner in ultrafast laser research

29.10.2008
Could lead to innovations benefiting medicine, energy and other technologies

For decades, the J.R. Macdonald Laboratory at Kansas State University has been known worldwide as a center for atomic collision physics using particle accelerators. Now, researchers at the lab are working toward making it known for ultrafast laser science.

The Macdonald Lab is the main part of the K-State atomic, molecular and optical physics program, which has ranked in the top 20 in the nation out of all such university programs, according to U.S. News and World Report. In recent years the lab has shifted its research focus to ultrafast laser science. This change in emphasis was marked with the installation of the Kansas Light Source, an intense ultrafast laser, a few years ago.

"There are advantages to both ultrafast laser research and accelerator research," said Itzik Ben-Itzhak, Macdonald Lab director and K-State professor of physics. "But the laser gives you the ability to control a reaction occurring within a molecule and not just to observe that phenomenon. Just imagine what opportunities such control could lead to in molecular engineering."

In a nutshell, he said, this is the key advantage for probing matter with lasers rather than collisions, which are nearly impossible to control.

The basic physics research at K-State's Macdonald Lab could one day enable researchers to tailor molecules to improve health care, energy and security. Ben-Itzhak said that the Macdonald Lab's work to investigate these fundamental processes and find out the optimal laser characteristics -- such as intensity, pulse duration and spectrum -- is the first step on a long road.

"We're not trying to be solely a laser technology lab," Ben-Itzhak said. "Rather, we are interested in studying laser-matter interactions on the atomic and molecular scale. However, in order to be in the forefront of this rapidly evolving field, we have to have the right balance between developing our laser technology, i.e. instrumental capabilities, and immediately interrogating matter with them."

The Macdonald Lab includes nine K-State faculty experts and brings in $2.5 million of U.S. Department of Energy support annually.

"If you exclude national laboratories, we have the biggest support within our program area in the Department of Energy," Ben-Itzhak said.

Along with Ben-Itzhak, the department of physics faculty include: Zenghu Chang, professor; Lew Cocke, distinguished professor; Brett DePaola, professor; Brett Esry, professor; Vinod Kumarappan, assistant professor; Chii-Dong Lin, distinguished professor; Igor Litvinyuk, assistant professor; and Uwe Thumm, professor. Research faculty include: Kevin Carnes, associate research professor; Charles Fehrenbach, research assistant professor; and An Thu Le, research assistant professor. Also included are atomic, molecular and optical physics program faculty Kristan Corwin, associate professor, and Brian Washburn, assistant professor.

These researchers leverage the DOE funding and the infrastructure it provides to bring in additional funding from the National Science Foundation, the Army Research Office and the Air Force Office of Scientific Research, among other sources. All together, the atomic, molecular and optical physics group brings in more than $4.7 million per year in grants.

In addition to the Macdonald Lab members, the Kansas Light Source also is used by others at K-State. For example, Shuting Lei, associate professor of industrial and manufacturing systems engineering, and his group members from the department use the lasers to drill holes because they are much cooler, temperature-wise, than using a drill press.

"Our goal is to be one of the top ultrafast labs for atomic, molecular and optical physics in the world. We want to draw people from around the world," Ben-Itzhak said. "What can we provide that will bring them here? We need to be an environment that is welcoming and friendly to other researchers. But they wouldn't be coming here unless there's also strong research and advanced laser technology."

Ben-Itzhak said the lab is currently suffering a bit from its own success. The switch to ultrafast laser science has generated such a demand for laser time that the laser resources available are no longer sufficient. In fact, the productivity of the lab is now limited primarily by laser time, he said. That's why the lab is working to acquire another laser that can provide new research opportunities in addition to relieving the logjam on laser time.

The atomic, molecular and optical physics group is also working to elevate the Macdonald Lab's profile in ultrafast laser science, which includes serving as host to an international conference in summer 2009 that will draw scientists from around the world.

"People from all over the world came to do atomic collision research at Kansas State University in the past," Ben-Itzhak said. "Now the question is, can we attract them to come for ultrafast laser science?"

Itzik Ben-Itzhak | EurekAlert!
Further information:
http://www.phys.ksu.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>