Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just add water: 3-D silicon shapes fold themselves when wetted by microscopic droplets

03.06.2014

Tiny self-assembling tools could one day deliver drugs to targeted areas of the body or even perform autonomous microsurgery

Researchers from the University of Twente in the Netherlands have taken the precise art of origami down to the microscopic scale. Using only a drop of water, the scientists have folded flat sheets of silicon nitride into cubes, pyramids, half soccer-ball-shaped bowls and long triangular structures that resemble Toblerone chocolate bars – an omnium-gatherum of geometric objects, which are almost too tiny to see with the naked eye.


This video shows how a flat design folds into a cube with the addition of water. The researchers can fold and unfold the cube multiple times without wear, as long at the structure remains wet.

Credit: Journal of Applied Physics/A. Legrain, et. al, University of Twente

"While making 3-D structures is natural in everyday life, it has always been extremely difficult to do so in microfabrication, especially if you want to build a large number of structures cheaply," said Antoine Legrain, a graduate student at the MESA+ Institute for Nanotechnology at the University of Twente. To help solve the challenge of building in miniature, researchers have turned to the technique of self-assembly, in which natural forces such as magnetism or surface tension trigger a shape change.

In the 1990s self-assembly became a way to help cram even more computing power into shrinking electronic devices. So-called solder assembly used the surface tension of melting solder to fold silicon, the electronic industry's standard semiconductor material, into 3-D shapes that more efficiently filled a small space with electrical components.

The University of Twente team also created silicon-based shapes, but they used a more ubiquitous liquid – water – to activate and control the folding. They describe their water-based folding system in a paper in the Journal of Applied Physics, from AIP Publishing.

"Water is everywhere, is biocompatible, cheap, and easy to apply," said Legrain. Using water instead of solder also speeds up the folding of each individual structure. If the water-based process is further developed to fold multiple structures at once, it could become cheaper than current self-folding approaches, said Legrain.

To create their menagerie of 3-D shapes, the researchers used a custom software program to first design the flat starting pattern. They then "printed" the design onto silicon wafers. To create hinges, the researchers etched away material just before depositing a thinner layer.

"Possible shapes are in principle limitless," said Legrain, "as long as they can first be made on a flat surface."

To fold the designs, the researchers pumped a small amount of water through a channel they had left in the silicon wafer. The capillary forces created by water molecules sticking to each other and to the silicon pulled the flat surfaces together to form fully three-dimensional creations.

The team also discovered that the final structures, which are about the size of a grain of sand, can be opened and closed up to 60 times without signs of wear, as long as they remain wet.

The ability to unfold and refold the structures could be useful in biomedical applications. For example, self-folding tools could deliver drugs exactly where they are needed in the body or grab a tiny amount of tissue for a micro-biopsy.

This is not the first time the researchers demonstrated the ability to fold silicon with water droplets, but it is the first time they devised a precise way to control the size of the droplets by pumping water through a channel located beneath the flat design. Previous efforts, which involved placing the water droplets by hand, were hard to control and resulted in structures that could only be folded once.

Watching through a microscope as the new system folded and unfolded shapes in front of his eyes was an exciting experience, said Legrain. "Cleanroom fabrication at research level can be long, tricky and frustrating. It is a good feeling when we obtain such nice results out of it," he said.

For now, creating the soccer ball and Toblerone shapes are fun ways for the researchers to test their system and understand its capabilities. Going forward, the team is working toward making conductive hinges and creating 3-D sensors with their new technique.

###

The article "Controllable elastocapillary folding of three-dimensional micro-objects through-wafer filling" is authored by A. Legrain, T. G. Janson, J. W. Berenschot, L. Abelmann and N. R. Tas. It will be published in the Journal of Applied Physics on June 3, 2014 (DOI: 10.1063/1.4878460). After that date, it may be accessed at: http://scitation.aip.org/content/aip/journal/jap/115/21/10.1063/1.4878460

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See: http://jap.aip.org

Jason Socrates Bardi | Eurek Alert!

Further reports about: ability droplets microscopic self-assembly structures technique tiny

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>