Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jupiter’s „Trojans“ on an Atomic Scale

25.01.2012
The planet Jupiter keeps asteroids on stable orbits – and in a similar way, electrons can be stabilized in their orbit around the atomic nucleus. Calculations carried out at the Vienna University of Technology have now been verified in an experiment.

Planets can orbit a star for billions of years. Electrons circling the atomic nucleus are often visualized as tiny planets. But due to quantum effects, the behavior of atoms usually differs significantly from planetary systems. Austrian and US-American scientists have now succeeded in keeping electrons on planet-like orbits for a long time. This was done using an idea from astronomy: Jupiter stabilizes the orbits of asteroids (the so called “Trojans”), and in a very similar way, the orbits of electrons around the nucleus can be stabilized using an electromagnetic field. The results of this experiment have now been published in the journal “Physical Review Letters”.


Giant Atoms

They are probably the largest atoms on earth: “The diameter of the electronic orbits is several hundredths of a millimeter – an enormous distance on an atomic scale”, says Shuhei Yoshida (Vienna UT). The atoms are even larger than erythrocytes. Yoshida made the calculations at Vienna University of Technology, the experiment was carried out at Rice University in Houston (Texas).

The Electron is not a Planet

The idea that atoms are similar to planetary systems dates back to Niels Bohr: he came up with the first atomic model, in which electrons circle the nucleus in well-defined orbits. This view, however, is now seen to be outdated. In quantum physics, the electron is described as a quantum wave, or a “probability cloud”, that surrounds the atomic nucleus. The location of an electron in the ground state (the lowest possible energy level) is not well defined. Relative to the nucleus, it is situated in all possible directions at the same time. Asking about its “real position” or its orbit just does not make sense. Only if the electron is transferred into a state of higher energy, it can be manipulated in such a way that it moves along orbit-like paths.

Jupiter’s trick – Used for the Atom

Unlike planets, electrons will not keep moving in such an orbit for ever. “Without additional stabilization, the electron-wave would become delocalized after a few cycles”, says Professor Joachim Burgdörfer, head of the Institute for Theoretical Physics at Vienna UT. A simple idea on how to stabilize orbits has been known in astronomy for a long time: the gravity of Jupiter, the heaviest planet in our solar system, stabilizes the orbits of the “Trojans” – thousands of small asteroids. They aggregate around so-called “Lagrange points” on Jupiter’s orbital path. Staying close to these Lagrange points, the asteroids circle the sun together with the planet – with exactly the same orbital velocity, so that the asteroids never collide with Jupiter.

In the experiment, the stabilizing influence of Jupiter’s gravity is substituted by a cleverly designed electromagnetic field. The field oscillates precisely with the frequency corresponding to the orbital period of the electron around the nucleus. It sets the pace for the electron, and that way the electron-wave is kept at a specific point for a long time – much like a large number of asteroids, staying close to Jupiter’s Lagrange points on their orbit around the sun. Quantum physics even allows manipulations which are impossible in a planetary system: using the electromagnetic field, the electron can by shifted into a different orbit – as if the orbit of Jupiter and its asteroids was suddenly shifted to the orbit of Saturn.

Big and Small

The physicists succeeded in creating an atomic miniature version of a solar system and preparing atoms which are remarkably close to the historic Bohr model. In future, the researchers want to prepare atoms in which several electrons move on planetary orbits at the same time. Using such atoms, it should be possible to investigate in greater detail how the quantum-world of tiny objects corresponds to the classical world as we perceive it.

Picture download: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/trojaner

Original publication: http://link.aps.org/doi/10.1103/PhysRevLett.108.043001

Further information:
Prof. Shuhei Yoshida
Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstraße 8, 1040 Wien
+43-1-58801-13611
shuhei.yoshida@tuwien.ac.at
Prof. Joachim Burgdörfer
Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstraße 8, 1040 Wien
+43-1-58801-13610
burg@concord.itp.tuwien.ac.at

Florian Aigner | EurekAlert!
Further information:
http://www.tuwien.ac.at
http://www.tuwien.ac.at/en/news/news_detail/article/7371/

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>