Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jupiter-like Planets Could Form Around Twin Suns

07.01.2009
Carbon monoxide and hydrogen cyanide found in gas cloud orbiting V4046 Sgr

Life on a planet ruled by two suns might be a little complicated. Two sunrises, two sunsets. Twice the radiation field.

In a paper published in the December 2008 issue of Astronomy and Astrophysics, astronomer Joel Kastner and his team suggest that planets may easily form around certain types of twin (or “binary”) star systems. A disk of molecules discovered orbiting a pair of twin young suns in the constellation Sagittarius strongly suggests that many such binary systems also host planets.

“We think the molecular gas orbiting these two stars almost literally represents ‘smoking gun’ evidence of recent or possibly ongoing ‘giant’ (Jupiter-like) planet formation around the binary star system,” says Kastner, professor at Rochester Institute of Technology’s Chester F. Carlson Center for Imaging Science.

Kastner used the 30-meter radiotelescope operated by the Institut de Radio Astronomie Millimetrique (IRAM) to study radio molecular spectra emitted from the vicinity of the two stars in a binary system called V4046 Sgr, which lies about 210 light-years away from our solar system. (V4046 Sgr is the 4046th brightest variable-brightness star in the constellation Sagittarius.) The scientists found “in large abundance” raw materials for planet formation around the nearby stars, including circumstellar carbon monoxide and hydrogen cyanide, in the noxious molecular gas cloud.

The young stars, approximately 10 million years old, are close in proximity to each other—only 10 solar diameters apart—and orbit each other once every 2.5 days.

“In this case the stars are so close together, and the profile of the gas in terms of the types of molecules that are there is so much like the types of gaseous disks that we see around single stars, that it’s a real link between planets forming around single stars and planets forming around double stars,” Kastner says.

Planets that have just formed around young stars like the V4046 Sgr twins might leave leftover gas, a potential clue for astronomers who hunt planets.
Recently, direct imaging of planets orbiting the single stars Fomalhaut and HR 8799 irrefutably confirmed the existence of exosolar planets—those that orbit stars other than our Sun. In the spring, Kastner hopes to use IRAM to look for gas left over from the formation of the planets orbiting HR 8799.

Kastner hopes to compare the molecular profile in the gas remnants surrounding the single star (HR 8799) with the gas composition surrounding the dual star-system (V4046 Sgr).

Not a planet hunter himself, Kastner encourages other scientists to look closely at V4046 Sgr to see if planets are forming around them.

“We really don’t have any idea right now about what kinds of planets form around double stars or even if planets can form around double stars,” Kastner says. “It’s not something that’s established. It’s theoretically possible, but I’m not aware of a single observation yet of a planet orbiting a double star. I hope someone will go looking soon, if they haven’t already, around V4046 Sagittarius.”

Rochester Institute of Technology is internationally recognized for academic leadership in computing, engineering, imaging technology, and fine and applied arts, in addition to unparalleled support services for students with hearing loss. Nearly 16,500 full- and part-time students are enrolled in more than 200 career-oriented and professional programs at RIT, and its cooperative education program is one of the oldest and largest in the nation.

For two decades, U.S. News & World Report has ranked RIT among the nation’s leading comprehensive universities. RIT is featured in The Princeton Review’s 2009 edition of The Best 368 Colleges and in Barron’s Best Buys in Education. The Chronicle of Higher Education recognizes RIT as a “Great College to Work For.”

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>