Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jupiter-like Planets Could Form Around Twin Suns

07.01.2009
Carbon monoxide and hydrogen cyanide found in gas cloud orbiting V4046 Sgr

Life on a planet ruled by two suns might be a little complicated. Two sunrises, two sunsets. Twice the radiation field.

In a paper published in the December 2008 issue of Astronomy and Astrophysics, astronomer Joel Kastner and his team suggest that planets may easily form around certain types of twin (or “binary”) star systems. A disk of molecules discovered orbiting a pair of twin young suns in the constellation Sagittarius strongly suggests that many such binary systems also host planets.

“We think the molecular gas orbiting these two stars almost literally represents ‘smoking gun’ evidence of recent or possibly ongoing ‘giant’ (Jupiter-like) planet formation around the binary star system,” says Kastner, professor at Rochester Institute of Technology’s Chester F. Carlson Center for Imaging Science.

Kastner used the 30-meter radiotelescope operated by the Institut de Radio Astronomie Millimetrique (IRAM) to study radio molecular spectra emitted from the vicinity of the two stars in a binary system called V4046 Sgr, which lies about 210 light-years away from our solar system. (V4046 Sgr is the 4046th brightest variable-brightness star in the constellation Sagittarius.) The scientists found “in large abundance” raw materials for planet formation around the nearby stars, including circumstellar carbon monoxide and hydrogen cyanide, in the noxious molecular gas cloud.

The young stars, approximately 10 million years old, are close in proximity to each other—only 10 solar diameters apart—and orbit each other once every 2.5 days.

“In this case the stars are so close together, and the profile of the gas in terms of the types of molecules that are there is so much like the types of gaseous disks that we see around single stars, that it’s a real link between planets forming around single stars and planets forming around double stars,” Kastner says.

Planets that have just formed around young stars like the V4046 Sgr twins might leave leftover gas, a potential clue for astronomers who hunt planets.
Recently, direct imaging of planets orbiting the single stars Fomalhaut and HR 8799 irrefutably confirmed the existence of exosolar planets—those that orbit stars other than our Sun. In the spring, Kastner hopes to use IRAM to look for gas left over from the formation of the planets orbiting HR 8799.

Kastner hopes to compare the molecular profile in the gas remnants surrounding the single star (HR 8799) with the gas composition surrounding the dual star-system (V4046 Sgr).

Not a planet hunter himself, Kastner encourages other scientists to look closely at V4046 Sgr to see if planets are forming around them.

“We really don’t have any idea right now about what kinds of planets form around double stars or even if planets can form around double stars,” Kastner says. “It’s not something that’s established. It’s theoretically possible, but I’m not aware of a single observation yet of a planet orbiting a double star. I hope someone will go looking soon, if they haven’t already, around V4046 Sagittarius.”

Rochester Institute of Technology is internationally recognized for academic leadership in computing, engineering, imaging technology, and fine and applied arts, in addition to unparalleled support services for students with hearing loss. Nearly 16,500 full- and part-time students are enrolled in more than 200 career-oriented and professional programs at RIT, and its cooperative education program is one of the oldest and largest in the nation.

For two decades, U.S. News & World Report has ranked RIT among the nation’s leading comprehensive universities. RIT is featured in The Princeton Review’s 2009 edition of The Best 368 Colleges and in Barron’s Best Buys in Education. The Chronicle of Higher Education recognizes RIT as a “Great College to Work For.”

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>