Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Juno slingshots past Earth on its way to Jupiter

09.10.2013
Spacecraft with UI instrument makes closest Earth encounter Oct. 9

If you've ever whirled a ball attached to a string around your head and then let it go, you know the great speed that can be achieved through a slingshot maneuver.


Juno, carrying a University of Iowa-designed-and-built instrument, will arrive at Jupiter in July 2016. Credit: NASA/JPL-Caltech

Similarly, NASA's Juno spacecraft will be passing within some 350 miles of Earth's surface at 3:21p.m. EDT Wednesday, Oct. 9, before it slingshots off into space on a historic exploration of Jupiter.

It's all part of a scientific investigation that began with an August 2011 launch. The mission will begin in earnest when Juno arrives at Jupiter in July 2016. Bill Kurth, University of Iowa research scientist and lead investigator for one of Juno's nine scientific instruments, the Waves instrument, says that the two years spent moving outward past the orbit of Mars before swinging past the Earth makes the trip to Jupiter possible.

"Juno will be really smoking as it passes Earth at a speed of about 25 miles per second relative to the sun. But it will need every bit of this speed to get to Jupiter for its July 4, 2016 capture into polar orbit about Jupiter," says Kurth, who has been involved with the mission since the beginning. "The first half of its journey has been simply to set up this gravity assist with Earth."

"One of Juno's activities during the Earth flyby will be to make a movie of the Earth-moon system that will be the first to show Earth spinning on its axis from a distance," says Scott Bolton, principal investigator for the Juno mission from Southwest Research Institute in San Antonio.

Kurth and colleagues UI Professor Don Gurnett and research scientist George Hospodarsky note that the real science will begin when Juno begins orbiting Jupiter some 33 times over the course of a year. Juno will be the first spacecraft to orbit Jupiter over its poles. The orbit will be highly eccentric, taking Juno from just above the cloud tops to a distance of about 1.75 million miles from Jupiter, every 11 days.

The UI-designed-and-built Waves instrument will examine a variety of phenomena within Jupiter's polar magnetosphere by measuring radio and plasma waves. It's one of nine experiments to be undertaken of the gas giant.

In particular, Juno will explore the solar system's most powerful auroras—Jupiter's northern and southern lights—by flying directly through the electrical current systems that generate them.

"Jupiter has the largest and most energetic magnetosphere, and to finally get an opportunity to study the nature of its auroras and the role radio and plasma waves play in their generation makes Juno a really exciting mission for me," says Kurth.

Juno's other major objectives are to understand the origin and evolution of the solar system's largest planet by:

Determining the amount of water and ammonia present in the atmosphere.
Observing the dynamics of Jupiter's upper atmosphere.
Mapping the planet's magnetic and gravity fields to learn more about its deep interior including the size of its core.

Gurnett, a world leader in the field of space plasma physics, says the Juno spacecraft and its unique orbit will expand upon Jupiter data gathered by previous UI instruments.

Juno's destiny is a fiery entry into Jupiter's atmosphere at the end of its one-year science phase as a means of guaranteeing it doesn't impact Europa and possibly contaminate that icy world with microbes from Earth. This would jeopardize future missions to that moon designed to determine whether life had begun there on its own.

The Juno Waves instrument will be the eighth UI instrument to make the trek to Jupiter. Previous Iowa instruments were carried aboard Pioneers 10 and 11, Voyagers 1 and 2, Galileo (including two UI instruments), and Cassini, currently in orbit around Saturn.

The Waves instrument was built at the UI by a group of about a dozen scientists, engineers, and technicians, led by research engineer Donald Kirchner. Terry Averkamp, Chris Piker, and William Robinson assist in the operation of the Waves instrument and in the data processing.

The Juno project is a collaborative enterprise, led by Scott Bolton of the Southwest Research Institute of San Antonio, including the UI and many other organizations and individuals.

NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., manages the Juno mission for the principal investigator, Bolton. The Juno mission is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems, Denver, built and operates the spacecraft. Launch management for the mission was the responsibility of NASA's Launch Services Program at the Kennedy Space Center in Florida. JPL is a division of the California Institute of Technology in Pasadena.

Contacts:
Bill Kurth, Department of Physics and Astronomy, 319-530-8312 (cell).
Don Gurnett, Department of Physics and Astronomy, 319-335-1697.
Gary Galluzzo, University Communication and Marketing, 319-384-0009.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>