Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Juno slingshots past Earth on its way to Jupiter

09.10.2013
Spacecraft with UI instrument makes closest Earth encounter Oct. 9

If you've ever whirled a ball attached to a string around your head and then let it go, you know the great speed that can be achieved through a slingshot maneuver.


Juno, carrying a University of Iowa-designed-and-built instrument, will arrive at Jupiter in July 2016. Credit: NASA/JPL-Caltech

Similarly, NASA's Juno spacecraft will be passing within some 350 miles of Earth's surface at 3:21p.m. EDT Wednesday, Oct. 9, before it slingshots off into space on a historic exploration of Jupiter.

It's all part of a scientific investigation that began with an August 2011 launch. The mission will begin in earnest when Juno arrives at Jupiter in July 2016. Bill Kurth, University of Iowa research scientist and lead investigator for one of Juno's nine scientific instruments, the Waves instrument, says that the two years spent moving outward past the orbit of Mars before swinging past the Earth makes the trip to Jupiter possible.

"Juno will be really smoking as it passes Earth at a speed of about 25 miles per second relative to the sun. But it will need every bit of this speed to get to Jupiter for its July 4, 2016 capture into polar orbit about Jupiter," says Kurth, who has been involved with the mission since the beginning. "The first half of its journey has been simply to set up this gravity assist with Earth."

"One of Juno's activities during the Earth flyby will be to make a movie of the Earth-moon system that will be the first to show Earth spinning on its axis from a distance," says Scott Bolton, principal investigator for the Juno mission from Southwest Research Institute in San Antonio.

Kurth and colleagues UI Professor Don Gurnett and research scientist George Hospodarsky note that the real science will begin when Juno begins orbiting Jupiter some 33 times over the course of a year. Juno will be the first spacecraft to orbit Jupiter over its poles. The orbit will be highly eccentric, taking Juno from just above the cloud tops to a distance of about 1.75 million miles from Jupiter, every 11 days.

The UI-designed-and-built Waves instrument will examine a variety of phenomena within Jupiter's polar magnetosphere by measuring radio and plasma waves. It's one of nine experiments to be undertaken of the gas giant.

In particular, Juno will explore the solar system's most powerful auroras—Jupiter's northern and southern lights—by flying directly through the electrical current systems that generate them.

"Jupiter has the largest and most energetic magnetosphere, and to finally get an opportunity to study the nature of its auroras and the role radio and plasma waves play in their generation makes Juno a really exciting mission for me," says Kurth.

Juno's other major objectives are to understand the origin and evolution of the solar system's largest planet by:

Determining the amount of water and ammonia present in the atmosphere.
Observing the dynamics of Jupiter's upper atmosphere.
Mapping the planet's magnetic and gravity fields to learn more about its deep interior including the size of its core.

Gurnett, a world leader in the field of space plasma physics, says the Juno spacecraft and its unique orbit will expand upon Jupiter data gathered by previous UI instruments.

Juno's destiny is a fiery entry into Jupiter's atmosphere at the end of its one-year science phase as a means of guaranteeing it doesn't impact Europa and possibly contaminate that icy world with microbes from Earth. This would jeopardize future missions to that moon designed to determine whether life had begun there on its own.

The Juno Waves instrument will be the eighth UI instrument to make the trek to Jupiter. Previous Iowa instruments were carried aboard Pioneers 10 and 11, Voyagers 1 and 2, Galileo (including two UI instruments), and Cassini, currently in orbit around Saturn.

The Waves instrument was built at the UI by a group of about a dozen scientists, engineers, and technicians, led by research engineer Donald Kirchner. Terry Averkamp, Chris Piker, and William Robinson assist in the operation of the Waves instrument and in the data processing.

The Juno project is a collaborative enterprise, led by Scott Bolton of the Southwest Research Institute of San Antonio, including the UI and many other organizations and individuals.

NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., manages the Juno mission for the principal investigator, Bolton. The Juno mission is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems, Denver, built and operates the spacecraft. Launch management for the mission was the responsibility of NASA's Launch Services Program at the Kennedy Space Center in Florida. JPL is a division of the California Institute of Technology in Pasadena.

Contacts:
Bill Kurth, Department of Physics and Astronomy, 319-530-8312 (cell).
Don Gurnett, Department of Physics and Astronomy, 319-335-1697.
Gary Galluzzo, University Communication and Marketing, 319-384-0009.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>